Unveiling the Structures and Properties of the Interface between Various Fluoroelastomers and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Polymer-bonded Explosives via Neutron Reflectivity
Xin-Xi Li, Xiao-Ling Xiong, Kun Song, Jia-Hui Liu, Liang-Fei Bai, Jun Chen, Jie Chen, Xiao-Qing Tu, Yue Yin, Dong Liu
{"title":"Unveiling the Structures and Properties of the Interface between Various Fluoroelastomers and Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Polymer-bonded Explosives via Neutron Reflectivity","authors":"Xin-Xi Li, Xiao-Ling Xiong, Kun Song, Jia-Hui Liu, Liang-Fei Bai, Jun Chen, Jie Chen, Xiao-Qing Tu, Yue Yin, Dong Liu","doi":"10.1007/s10118-025-3368-9","DOIUrl":null,"url":null,"abstract":"<div><p>The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) based polymer-bonded explosives (PBXs). To simulate the confined interface in PBXs, bilayer films of F2314/HMX and F2311/HMX were designed. Neutron reflectivity (NR), nanoindentation, and X-ray reflectivity (XRR) were employed to examine the layer thickness, interface characteristics, diffusion behavior, and surface morphology of the bilayers. NR measurements revealed interface thicknesses of 45 Å and 98 Å for F2314/HMX and F2311/HMX, respectively, indicating deeper penetration of F2311 into the HMX matrix. NR also suggested a denser polymer network with a higher scattering length density (SLD) near the HMX interface for both fluoroelastomers, while the bound layer of F2311 was notably thicker. Nanoindentation cross-checks and confirms the presence of a bound layer, highlighting the differences in stiffness and diffusion ability between the two polymers. The consistency between the NR and nanoindentation results suggests that F2311 demonstrates better flexibility and elasticity, whereas F2314 is stiffer and more plastic. Accordingly, the structures and performances of different fluoroelastomers at the HMX interface are discussed, which can provide valuable insights into the selection of binders for PBX formulations tailored to specific applications.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1651 - 1660"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3368-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The current work addresses the challenge of elucidating the performance of fluoroelastomers within the HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) based polymer-bonded explosives (PBXs). To simulate the confined interface in PBXs, bilayer films of F2314/HMX and F2311/HMX were designed. Neutron reflectivity (NR), nanoindentation, and X-ray reflectivity (XRR) were employed to examine the layer thickness, interface characteristics, diffusion behavior, and surface morphology of the bilayers. NR measurements revealed interface thicknesses of 45 Å and 98 Å for F2314/HMX and F2311/HMX, respectively, indicating deeper penetration of F2311 into the HMX matrix. NR also suggested a denser polymer network with a higher scattering length density (SLD) near the HMX interface for both fluoroelastomers, while the bound layer of F2311 was notably thicker. Nanoindentation cross-checks and confirms the presence of a bound layer, highlighting the differences in stiffness and diffusion ability between the two polymers. The consistency between the NR and nanoindentation results suggests that F2311 demonstrates better flexibility and elasticity, whereas F2314 is stiffer and more plastic. Accordingly, the structures and performances of different fluoroelastomers at the HMX interface are discussed, which can provide valuable insights into the selection of binders for PBX formulations tailored to specific applications.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.