Anna Musolino , Pierre Rochette , Jean-Alix Barrat , Fred Jourdan , Bruno Reynard , Bertrand Devouard , Valerie Andrieu , Jérôme Gattacceca , Vladimir Vidal
{"title":"A new tektite strewn field in Australia ejected from a volcanic arc impact crater 11 Myr ago","authors":"Anna Musolino , Pierre Rochette , Jean-Alix Barrat , Fred Jourdan , Bruno Reynard , Bertrand Devouard , Valerie Andrieu , Jérôme Gattacceca , Vladimir Vidal","doi":"10.1016/j.epsl.2025.119600","DOIUrl":null,"url":null,"abstract":"<div><div>This study re-evaluates the anomalous subgroup of australites known as high Na/K (HNa/K) tektites (Chapman and Scheiber, 1969). Although previous compositional and isotopic analyses suggested a distinct origin, the group has never been formally recognized as a separate tektite strewn field. We present new data from six HNa/K tektites, complementing the eight specimens already described. We conducted a comprehensive investigation, including petrographic (optical and electron microscopy, and micro-X-ray tomography), geochemical (major and trace element compositions, Sr-Nd isotopic composition, <sup>40</sup>Ar/<sup>39</sup>Ar dating), and spectroscopic (for the identification of inclusions) analyses. We concluded that the HNa/K tektites originated from a separate impact event compared to Australasian tektites; they have an andesitic to dacitic composition and arc-related trace element signatures. Lechatelierite (and phosphate) inclusions as well as high levels of chondritic contamination support an impact origin, for which we provide a more precise <sup>40</sup>Ar/<sup>39</sup>Ar age: 10.76 ± 0.05 Ma. For now, Sr-Nd isotopic data and trace elements composition point to three possible sources associated with active volcanic arcs: Luzon (Philippines), Sulawesi (Indonesia), and the Bismarck region (Papua New Guinea). Systematic petrographic and geochemical differences observed between tektites from the western and eastern parts of the ∼900-km-wide hypothesized strewn field (located in Southern Australia) may help to constrain the location of the source crater, but they need to be confirmed by the study of more specimens. We propose the name “Ananguite” for this new group of tektites.</div></div>","PeriodicalId":11481,"journal":{"name":"Earth and Planetary Science Letters","volume":"670 ","pages":"Article 119600"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012821X2500398X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study re-evaluates the anomalous subgroup of australites known as high Na/K (HNa/K) tektites (Chapman and Scheiber, 1969). Although previous compositional and isotopic analyses suggested a distinct origin, the group has never been formally recognized as a separate tektite strewn field. We present new data from six HNa/K tektites, complementing the eight specimens already described. We conducted a comprehensive investigation, including petrographic (optical and electron microscopy, and micro-X-ray tomography), geochemical (major and trace element compositions, Sr-Nd isotopic composition, 40Ar/39Ar dating), and spectroscopic (for the identification of inclusions) analyses. We concluded that the HNa/K tektites originated from a separate impact event compared to Australasian tektites; they have an andesitic to dacitic composition and arc-related trace element signatures. Lechatelierite (and phosphate) inclusions as well as high levels of chondritic contamination support an impact origin, for which we provide a more precise 40Ar/39Ar age: 10.76 ± 0.05 Ma. For now, Sr-Nd isotopic data and trace elements composition point to three possible sources associated with active volcanic arcs: Luzon (Philippines), Sulawesi (Indonesia), and the Bismarck region (Papua New Guinea). Systematic petrographic and geochemical differences observed between tektites from the western and eastern parts of the ∼900-km-wide hypothesized strewn field (located in Southern Australia) may help to constrain the location of the source crater, but they need to be confirmed by the study of more specimens. We propose the name “Ananguite” for this new group of tektites.
期刊介绍:
Earth and Planetary Science Letters (EPSL) is a leading journal for researchers across the entire Earth and planetary sciences community. It publishes concise, exciting, high-impact articles ("Letters") of broad interest. Its focus is on physical and chemical processes, the evolution and general properties of the Earth and planets - from their deep interiors to their atmospheres. EPSL also includes a Frontiers section, featuring invited high-profile synthesis articles by leading experts on timely topics to bring cutting-edge research to the wider community.