Biomass-tar coated converter slag composites: A sustainable approach for high-performance supercapacitors

IF 6.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Tao Zhang , Hongkai Di , Guangzhe Zhang , Hanrui Ma , Jingsi Yang , Ruihong Zhao , Jiangze Han , Kunjie Li
{"title":"Biomass-tar coated converter slag composites: A sustainable approach for high-performance supercapacitors","authors":"Tao Zhang ,&nbsp;Hongkai Di ,&nbsp;Guangzhe Zhang ,&nbsp;Hanrui Ma ,&nbsp;Jingsi Yang ,&nbsp;Ruihong Zhao ,&nbsp;Jiangze Han ,&nbsp;Kunjie Li","doi":"10.1016/j.jaap.2025.107344","DOIUrl":null,"url":null,"abstract":"<div><div>Converter steel slag is a significant source of solid waste, which is typically disposed of in landfills and occupies substantial land resources. Biomass tar, a byproduct of biomass thermal conversion, usually contains various toxic substances that can cause environmental harm. This study presented a co-carbonization approach of biomass tar and converter steel slag for the synergistic preparation of high-performance supercapacitor electrode materials. The material integrated a dual energy storage mechanism: the porous carbon matrix derived from biomass tar provided double-layer capacitance, while the exposed Fe<sub>2</sub>O<sub>3</sub> active sites and N/O heteroatoms in the modified converter steel slag enabled pseudocapacitive effects. Among all the materials evaluated, S@TC-3 demonstrated the most outstanding electrochemical performance: achieving a remarkable specific capacitance of 333.2 F/g in a three-electrode configuration. When assembled into a symmetric device operating at 1.8 V, it delivered an energy density of 18.47 Wh/kg at a power density of 499 W/kg. Furthermore, after 10,000 charge-discharge cycles, the capacitance retention remained as high as 86.5 %. This approach achieved the value-added utilization of industrial wastes and provided a new pathway for low-cost, scalable preparation of advanced energy storage materials.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"193 ","pages":"Article 107344"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025003973","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Converter steel slag is a significant source of solid waste, which is typically disposed of in landfills and occupies substantial land resources. Biomass tar, a byproduct of biomass thermal conversion, usually contains various toxic substances that can cause environmental harm. This study presented a co-carbonization approach of biomass tar and converter steel slag for the synergistic preparation of high-performance supercapacitor electrode materials. The material integrated a dual energy storage mechanism: the porous carbon matrix derived from biomass tar provided double-layer capacitance, while the exposed Fe2O3 active sites and N/O heteroatoms in the modified converter steel slag enabled pseudocapacitive effects. Among all the materials evaluated, S@TC-3 demonstrated the most outstanding electrochemical performance: achieving a remarkable specific capacitance of 333.2 F/g in a three-electrode configuration. When assembled into a symmetric device operating at 1.8 V, it delivered an energy density of 18.47 Wh/kg at a power density of 499 W/kg. Furthermore, after 10,000 charge-discharge cycles, the capacitance retention remained as high as 86.5 %. This approach achieved the value-added utilization of industrial wastes and provided a new pathway for low-cost, scalable preparation of advanced energy storage materials.
生物质焦油包覆转炉炉渣复合材料:高性能超级电容器的可持续发展途径
转炉钢渣是固体废物的重要来源,通常在垃圾填埋场进行处理,占用大量的土地资源。生物质焦油是生物质热转化的副产品,通常含有多种有毒物质,可对环境造成危害。研究了生物质焦油与转炉钢渣共碳化协同制备高性能超级电容器电极材料的方法。该材料集成了双重储能机制:来自生物质焦油的多孔碳基体提供双层电容,而改性转炉钢渣中暴露的Fe2O3活性位点和N/O杂原子则实现了赝电容效应。在所有被评估的材料中,S@TC-3表现出最突出的电化学性能:在三电极配置下实现了333.2 F/g的显着比电容。当组装成一个工作在1.8 V的对称器件时,它的能量密度为18.47 Wh/kg,功率密度为499 W/kg。在1万次充放电循环后,电容保持率高达86.5 %。该方法实现了工业废弃物的增值利用,为低成本、规模化制备先进储能材料提供了新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
11.70%
发文量
340
审稿时长
44 days
期刊介绍: The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信