Application of optimal homotopy asymptotic method with use of Daftardar Jeffery Polynomials to Benjamin-Bona-Mahony equation

Q1 Mathematics
Showkat Ahmad Lone , Rawan Bossly , M.M. Seada , Anwar Saeed
{"title":"Application of optimal homotopy asymptotic method with use of Daftardar Jeffery Polynomials to Benjamin-Bona-Mahony equation","authors":"Showkat Ahmad Lone ,&nbsp;Rawan Bossly ,&nbsp;M.M. Seada ,&nbsp;Anwar Saeed","doi":"10.1016/j.padiff.2025.101282","DOIUrl":null,"url":null,"abstract":"<div><div>The Benjamin-Bhona-Mahony equation is a non-linear partial differential equation arising in the study of waves, oceanography, Plasma physics, and shallow water theory. In the present work, we looked at the approximate solution of non-linear Benjamin-Bona-Mahony (BBM) problem by the Optimal Homotopy Asymptotic Method with Daftardar Jeffery Polynomials (OHAM-DJ). The BBM result is compared to analytic evaluation, the Homotopy Perturbation Technique (HPM), the Adomian Decomposition Method (ADM), and the Optimal Homotopy Asymptotic Method (OHAM-DJ). Figures of precise versus approximate solutions are also created, and it is established that OHAM-DJ's solution is substantially closer to the approximative than the precise. Additionally, the outcome demonstrates the effectiveness, simplicity, ease of use, and explicitness of OAM-DJ and provides a good means of controlling the convergence of approximations.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101282"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Benjamin-Bhona-Mahony equation is a non-linear partial differential equation arising in the study of waves, oceanography, Plasma physics, and shallow water theory. In the present work, we looked at the approximate solution of non-linear Benjamin-Bona-Mahony (BBM) problem by the Optimal Homotopy Asymptotic Method with Daftardar Jeffery Polynomials (OHAM-DJ). The BBM result is compared to analytic evaluation, the Homotopy Perturbation Technique (HPM), the Adomian Decomposition Method (ADM), and the Optimal Homotopy Asymptotic Method (OHAM-DJ). Figures of precise versus approximate solutions are also created, and it is established that OHAM-DJ's solution is substantially closer to the approximative than the precise. Additionally, the outcome demonstrates the effectiveness, simplicity, ease of use, and explicitness of OAM-DJ and provides a good means of controlling the convergence of approximations.
利用Daftardar Jeffery多项式的最优同伦渐近方法在Benjamin-Bona-Mahony方程中的应用
Benjamin-Bhona-Mahony方程是波浪、海洋学、等离子体物理和浅水理论研究中出现的非线性偏微分方程。本文研究了基于Daftardar - Jeffery多项式(OHAM-DJ)的非线性Benjamin-Bona-Mahony (BBM)问题的最优同伦渐近方法的近似解。将BBM结果与解析评价、同伦摄动技术(HPM)、Adomian分解方法(ADM)和最优同伦渐近方法(OHAM-DJ)进行了比较。还创建了精确与近似解决方案的图形,并确定了OHAM-DJ的解决方案实质上更接近近似而不是精确。此外,结果还证明了OAM-DJ的有效性、简单性、易用性和显式性,并提供了控制近似收敛的良好方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信