I. Criouet , S. Bernard , E. Balan , F. Baron , A. Buch , F. Skouri-Panet , M. Guillaumet , L. Delbes , L. Remusat , J.-C. Viennet
{"title":"Preservation of organic traces of life under Martian conditions: Influence of the nature of the smectite in presence","authors":"I. Criouet , S. Bernard , E. Balan , F. Baron , A. Buch , F. Skouri-Panet , M. Guillaumet , L. Delbes , L. Remusat , J.-C. Viennet","doi":"10.1016/j.icarus.2025.116789","DOIUrl":null,"url":null,"abstract":"<div><div>Clay-rich Martian rocks are considered promising targets in the search for fossilized remains of ancient Martian life. However, the actual influence of the clay mineral compositions in preserving microbial biosignatures remains poorly understood. Here, we explore the biopreservation potential of three pure smectites typically found on Mars and containing Al in their tetrahedral sheets (i.e. a Mg-rich, a Fe-rich and a Al-rich smectite), relying on experiments run using <em>E. coli</em> as a biological analog to simulate hydrothermal alteration scenarios relevant to Mars. The results show that Mg-rich smectites (saponite) are more effective at preserving biomolecules from thermal degradation than Fe-rich and Al-rich smectites (nontronite and beidellite). Plus, in contrast to saponite, neither nontronite nor beidellite appears to significantly trap (and thus preserve) organic compounds within their interlayer spaces. Overall, the present study highlights that both the chemistry and the abundance of organic material in ancient Martian clay-rich rocks will depend on the compositional nature of smectites initially present.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"443 ","pages":"Article 116789"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525003379","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Clay-rich Martian rocks are considered promising targets in the search for fossilized remains of ancient Martian life. However, the actual influence of the clay mineral compositions in preserving microbial biosignatures remains poorly understood. Here, we explore the biopreservation potential of three pure smectites typically found on Mars and containing Al in their tetrahedral sheets (i.e. a Mg-rich, a Fe-rich and a Al-rich smectite), relying on experiments run using E. coli as a biological analog to simulate hydrothermal alteration scenarios relevant to Mars. The results show that Mg-rich smectites (saponite) are more effective at preserving biomolecules from thermal degradation than Fe-rich and Al-rich smectites (nontronite and beidellite). Plus, in contrast to saponite, neither nontronite nor beidellite appears to significantly trap (and thus preserve) organic compounds within their interlayer spaces. Overall, the present study highlights that both the chemistry and the abundance of organic material in ancient Martian clay-rich rocks will depend on the compositional nature of smectites initially present.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.