Erin C.S. Lee , Nathan M. Young , Rebekah L. Lawrence , Michael J. Rainbow
{"title":"Scapular kinematics and task specificity: The effect of load direction","authors":"Erin C.S. Lee , Nathan M. Young , Rebekah L. Lawrence , Michael J. Rainbow","doi":"10.1016/j.jbiomech.2025.112932","DOIUrl":null,"url":null,"abstract":"<div><div>Our current understanding of healthy scapula motion is mainly based on studying the shoulder when it is generating an abduction torque against gravity. However, the shoulder can perform diverse tasks beyond abduction. In particular, little attention has been given to how scapula motion contributes to concentric adduction despite its involvement in high-demand tasks such as rock climbing and wheelchair transfers. Investigating scapular kinematics during concentrically loaded arm-lowering can provide insight into the mechanical demands underlying healthy scapula motion. In this study, we combined biplanar videoradiography and optical motion capture with a controllable cable machine to compare the three-dimensional humerothoracic, glenohumeral, and scapulothoracic kinematics between a weighted pull-down task (involving concentric shoulder adduction) and a weighted press-up task (involving concentric shoulder abduction) in ten healthy adults. We observed significantly more scapulothoracic upward rotation and less glenohumeral abduction during concentric adduction than concentric abduction. Our findings indicate that scapula upward rotation is not simply a function of overall humerothoracic elevation, but instead varies in a load-specific manner – potentially to orient the glenoid in a way that facilitates glenohumeral joint stability. We also observed substantial inter-individual variability in scapular kinematics within a task, and in how individuals responded to the different tasks. Our findings help provide a more well-rounded understanding of healthy scapular kinematics such that we can better identify and treat unhealthy motion (i.e., dyskinesis). Our findings can also inform musculoskeletal models that simulate scapulothoracic kinematics.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"191 ","pages":"Article 112932"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929025004440","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our current understanding of healthy scapula motion is mainly based on studying the shoulder when it is generating an abduction torque against gravity. However, the shoulder can perform diverse tasks beyond abduction. In particular, little attention has been given to how scapula motion contributes to concentric adduction despite its involvement in high-demand tasks such as rock climbing and wheelchair transfers. Investigating scapular kinematics during concentrically loaded arm-lowering can provide insight into the mechanical demands underlying healthy scapula motion. In this study, we combined biplanar videoradiography and optical motion capture with a controllable cable machine to compare the three-dimensional humerothoracic, glenohumeral, and scapulothoracic kinematics between a weighted pull-down task (involving concentric shoulder adduction) and a weighted press-up task (involving concentric shoulder abduction) in ten healthy adults. We observed significantly more scapulothoracic upward rotation and less glenohumeral abduction during concentric adduction than concentric abduction. Our findings indicate that scapula upward rotation is not simply a function of overall humerothoracic elevation, but instead varies in a load-specific manner – potentially to orient the glenoid in a way that facilitates glenohumeral joint stability. We also observed substantial inter-individual variability in scapular kinematics within a task, and in how individuals responded to the different tasks. Our findings help provide a more well-rounded understanding of healthy scapular kinematics such that we can better identify and treat unhealthy motion (i.e., dyskinesis). Our findings can also inform musculoskeletal models that simulate scapulothoracic kinematics.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.