Enhanced tensor factorization for spatiotemporal imputation of high-frequency water quality monitoring data

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xuke Wu , Kun Shan , Friedrich Recknagel , Lan Wang , Mingsheng Shang
{"title":"Enhanced tensor factorization for spatiotemporal imputation of high-frequency water quality monitoring data","authors":"Xuke Wu ,&nbsp;Kun Shan ,&nbsp;Friedrich Recknagel ,&nbsp;Lan Wang ,&nbsp;Mingsheng Shang","doi":"10.1016/j.envsoft.2025.106667","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic high-frequency monitoring (AHFM) of water quality is increasingly being deployed to enhance the management and scientific understanding of eutrophic lakes. However, the prevalence of missing data in such systems poses significant challenges, potentially compromising decision-making processes and distorting analytical or modelling outcomes. This study proposes an enhanced tensor factorization model, termed the Diverse Biases-integrated Adaptive Latent-factorization-of-tensors (DBAL), which decomposes high-dimensional data into low-rank components while incorporating diverse linear biases to capture temporal fluctuations and employing a differential evolution algorithm for adaptive hyperparameter optimization. Extensive empirical validation using real-world AHFM datasets from a large eutrophic lake in China demonstrates that our proposed DBAL consistently outperforms the state-of-the-art models, achieving 5.6 %–50.3 % and 5.7 %–43.7 % reductions in RMSE and MAE, alongside a 0.3 %–6.1 % improvement in R<sup>2</sup>. Notably, DBAL demonstrates variable-specific performance, with particularly accurate imputation for stable physical parameters while revealing greater challenges for biologically-active variables that exhibit stronger temporal dynamics.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"193 ","pages":"Article 106667"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003512","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic high-frequency monitoring (AHFM) of water quality is increasingly being deployed to enhance the management and scientific understanding of eutrophic lakes. However, the prevalence of missing data in such systems poses significant challenges, potentially compromising decision-making processes and distorting analytical or modelling outcomes. This study proposes an enhanced tensor factorization model, termed the Diverse Biases-integrated Adaptive Latent-factorization-of-tensors (DBAL), which decomposes high-dimensional data into low-rank components while incorporating diverse linear biases to capture temporal fluctuations and employing a differential evolution algorithm for adaptive hyperparameter optimization. Extensive empirical validation using real-world AHFM datasets from a large eutrophic lake in China demonstrates that our proposed DBAL consistently outperforms the state-of-the-art models, achieving 5.6 %–50.3 % and 5.7 %–43.7 % reductions in RMSE and MAE, alongside a 0.3 %–6.1 % improvement in R2. Notably, DBAL demonstrates variable-specific performance, with particularly accurate imputation for stable physical parameters while revealing greater challenges for biologically-active variables that exhibit stronger temporal dynamics.

Abstract Image

基于增强张量分解的高频水质监测数据时空插值
水质自动高频监测(AHFM)越来越多地用于加强富营养化湖泊的管理和科学认识。然而,这些系统中普遍存在的缺失数据构成了重大挑战,可能危及决策过程并扭曲分析或建模结果。本研究提出了一种增强的张量因子分解模型,称为多元偏差集成自适应张量潜在因子分解(DBAL),该模型将高维数据分解为低秩分量,同时结合多种线性偏差来捕捉时间波动,并采用微分进化算法进行自适应超参数优化。使用来自中国大型富营养化湖泊的真实AHFM数据集进行的广泛实证验证表明,我们提出的DBAL始终优于最先进的模型,RMSE和MAE分别降低5.6% - 50.3%和5.7% - 43.7%,R2提高0.3% - 6.1%。值得注意的是,DBAL展示了变量特异性性能,对稳定的物理参数进行了特别准确的估算,同时揭示了对表现出更强时间动态的生物活性变量的更大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信