Integrating physics-informed symbolic regression with finite element models for damage law discovery

IF 5.3 2区 工程技术 Q1 MECHANICS
Mohammad Zhian Asadzadeh , Jakob Bialowas , Zain Ali , Dietmar Gruber , Hans-Peter Gänser
{"title":"Integrating physics-informed symbolic regression with finite element models for damage law discovery","authors":"Mohammad Zhian Asadzadeh ,&nbsp;Jakob Bialowas ,&nbsp;Zain Ali ,&nbsp;Dietmar Gruber ,&nbsp;Hans-Peter Gänser","doi":"10.1016/j.engfracmech.2025.111501","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical simulation of fracture behavior in materials is a complex and challenging task. Accurate modeling of nonlinear mechanical behavior in systems affected by degradation and fracture relies on implementing suitable damage models within finite element methods (FEMs). This study explores the integration of physics-informed symbolic regression (SR) with FEM to derive an analytical damage law directly from experimental wedge splitting test data. Using genetic programming operations, a population of candidate damage equations evolves over hundreds of generations to identify the best fit to the measured load–displacement (F-D) data. Our findings demonstrate that the SR method yields a damage model that balances both accuracy and interpretability. Additionally, we discuss the efficiency and challenges associated with integrating SR with FEM, highlighting its potential for practical engineering applications.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"328 ","pages":"Article 111501"},"PeriodicalIF":5.3000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425007027","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical simulation of fracture behavior in materials is a complex and challenging task. Accurate modeling of nonlinear mechanical behavior in systems affected by degradation and fracture relies on implementing suitable damage models within finite element methods (FEMs). This study explores the integration of physics-informed symbolic regression (SR) with FEM to derive an analytical damage law directly from experimental wedge splitting test data. Using genetic programming operations, a population of candidate damage equations evolves over hundreds of generations to identify the best fit to the measured load–displacement (F-D) data. Our findings demonstrate that the SR method yields a damage model that balances both accuracy and interpretability. Additionally, we discuss the efficiency and challenges associated with integrating SR with FEM, highlighting its potential for practical engineering applications.
集成物理信息符号回归与有限元模型损伤规律发现
材料断裂行为的数值模拟是一项复杂而具有挑战性的任务。在受退化和断裂影响的系统中,非线性力学行为的精确建模依赖于在有限元方法(fem)中实现合适的损伤模型。本研究探索了物理信息符号回归(SR)与FEM的结合,直接从实验楔形劈裂试验数据中推导出分析损伤规律。使用遗传规划操作,候选损伤方程的种群经过数百代的演化,以确定最适合测量的载荷-位移(F-D)数据。我们的研究结果表明,SR方法产生了一个平衡准确性和可解释性的损伤模型。此外,我们还讨论了将SR与FEM相结合的效率和挑战,强调了其在实际工程应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信