Super edge-connectivity of transitive hypergraphs

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Shuang Zhao, Xiaomin Hu, Weihua Yang
{"title":"Super edge-connectivity of transitive hypergraphs","authors":"Shuang Zhao,&nbsp;Xiaomin Hu,&nbsp;Weihua Yang","doi":"10.1016/j.amc.2025.129698","DOIUrl":null,"url":null,"abstract":"<div><div>The properties of fragments and superatoms, first arose in the work of Mader et al., have turned out to be powerful tools in the study of graph connectivity. We generalize the concept of an edge fragment and an edge superatom to hypergraphs and reveal that these generalizations share features with the common concepts. As applications of these properties, we investigate the super edge-connectivity of uniform linear vertex transitive hypergraphs, uniform linear <span><math><mi>t</mi></math></span>-Cayley hypergraphs and linear edge transitive hypergraphs, and derive the main result of Burgess et al. [J. Graph Theory, 105(2024)252–259] as a corollary.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"509 ","pages":"Article 129698"},"PeriodicalIF":3.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325004242","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The properties of fragments and superatoms, first arose in the work of Mader et al., have turned out to be powerful tools in the study of graph connectivity. We generalize the concept of an edge fragment and an edge superatom to hypergraphs and reveal that these generalizations share features with the common concepts. As applications of these properties, we investigate the super edge-connectivity of uniform linear vertex transitive hypergraphs, uniform linear t-Cayley hypergraphs and linear edge transitive hypergraphs, and derive the main result of Burgess et al. [J. Graph Theory, 105(2024)252–259] as a corollary.
传递超图的超边连通性
片段和超原子的性质最初是在Mader等人的工作中提出的,已经被证明是研究图连通性的有力工具。我们将边缘片段和边缘超原子的概念推广到超图,并揭示了这些推广与一般概念具有共同的特征。作为这些性质的应用,我们研究了一致线性顶点传递超图、一致线性t-Cayley超图和线性边缘传递超图的超边连通性,并得到了Burgess等人的主要结果。图论,105(2024)252-259]作为推论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信