Test Case Generation Using an Attention Seq2Seq Model for Structuring Requirement Specifications

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuki Shimizu;Kiyoshi Ueda
{"title":"Test Case Generation Using an Attention Seq2Seq Model for Structuring Requirement Specifications","authors":"Yuki Shimizu;Kiyoshi Ueda","doi":"10.23919/comex.2025XBL0079","DOIUrl":null,"url":null,"abstract":"In the development of large-scale communication software, various methods have been investigated to address challenges such as increasing development costs and shortages of skilled personnel by leveraging machine learning to automatically generate system test cases from requirement specifications. To further improve the accuracy of automatically generated test cases, this study proposes a method that employs deep learning to structure requirement specifications and generate test cases. In particular, we introduce an Attention Seq2Seq model. The proposed model achieved significantly higher accuracy than theLSTM model presented in previous studies.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"14 9","pages":"346-348"},"PeriodicalIF":0.3000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11078829","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11078829/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the development of large-scale communication software, various methods have been investigated to address challenges such as increasing development costs and shortages of skilled personnel by leveraging machine learning to automatically generate system test cases from requirement specifications. To further improve the accuracy of automatically generated test cases, this study proposes a method that employs deep learning to structure requirement specifications and generate test cases. In particular, we introduce an Attention Seq2Seq model. The proposed model achieved significantly higher accuracy than theLSTM model presented in previous studies.
使用注意力Seq2Seq模型生成测试用例以构建需求规范
在大规模通信软件的开发中,已经研究了各种方法来解决挑战,例如通过利用机器学习从需求规范中自动生成系统测试用例来增加开发成本和技术人员的短缺。为了进一步提高自动生成测试用例的准确性,本研究提出了一种利用深度学习来构建需求规范并生成测试用例的方法。特别地,我们引入了一个注意力Seq2Seq模型。该模型的精度明显高于前人研究的theLSTM模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信