Achieving a stable 518 Wh kg−1 Li metal pouch cell via SEI reconstruction engineering for high Li+ conductive hetero-grain boundaries

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhongwei Jiang, Junyang Liu, Ke Yue, Man Pang, Yixuan Peng, Chongyang Luo, Ziqing Yao, Tao Pan, Yuanyuan Wang, Yujie Li, Qingpeng Guo, Chunman Zheng, Weiwei Sun, Xinyong Tao and Shuangke Liu
{"title":"Achieving a stable 518 Wh kg−1 Li metal pouch cell via SEI reconstruction engineering for high Li+ conductive hetero-grain boundaries","authors":"Zhongwei Jiang, Junyang Liu, Ke Yue, Man Pang, Yixuan Peng, Chongyang Luo, Ziqing Yao, Tao Pan, Yuanyuan Wang, Yujie Li, Qingpeng Guo, Chunman Zheng, Weiwei Sun, Xinyong Tao and Shuangke Liu","doi":"10.1039/D5EE02670A","DOIUrl":null,"url":null,"abstract":"<p >Carbonate electrolytes are highly corrosive to lithium (Li) metal, leading to side reactions, dendrite growth and dead Li, which pose critical challenges in achieving stable high-energy Li metal batteries under a lean electrolyte. Here, we introduce a molecular surface reconstruction strategy to engineer a LiF/Li<small><sub>2</sub></small>O-rich solid electrolyte interphase (SEI) featuring high Li<small><sup>+</sup></small>-conductive hetero-grain boundaries. By spraying fluorinated ether-based carboxylic acid (PFOA) onto the Li metal surface, we eliminate the native oxide layer and engineer a self-optimized inorganic interphase that integrates exceptional mechanical robustness with rapid Li<small><sup>+</sup></small> transport along the hetero-grain boundaries. This dual functional interphase effectively suppresses Li dendrite growth and dead Li accumulation, as evidenced by microscopy visualization and isotope-labeled mass spectrometry titration (MST) techniques, with MST quantifying a significant reduction in dead Li and LiH within the modified SEI. Benefiting from the surface reconstruction strategy, a 5.8 Ah Li metal pouch cell achieves a high energy density of 518 Wh kg<small><sup>−1</sup></small> (based on the total mass of the cell) with an ultra-lean carbonate electrolyte (1.12 g Ah<small><sup>−1</sup></small>) and maintains stable cycling over 100 cycles. Our findings on surface reconstruction for a high Li<small><sup>+</sup></small> conductive hetero-grain boundary passivation layer point to a new pathway towards achieving stable cycling for energy dense Li metal batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 20","pages":" 9240-9253"},"PeriodicalIF":30.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee02670a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonate electrolytes are highly corrosive to lithium (Li) metal, leading to side reactions, dendrite growth and dead Li, which pose critical challenges in achieving stable high-energy Li metal batteries under a lean electrolyte. Here, we introduce a molecular surface reconstruction strategy to engineer a LiF/Li2O-rich solid electrolyte interphase (SEI) featuring high Li+-conductive hetero-grain boundaries. By spraying fluorinated ether-based carboxylic acid (PFOA) onto the Li metal surface, we eliminate the native oxide layer and engineer a self-optimized inorganic interphase that integrates exceptional mechanical robustness with rapid Li+ transport along the hetero-grain boundaries. This dual functional interphase effectively suppresses Li dendrite growth and dead Li accumulation, as evidenced by microscopy visualization and isotope-labeled mass spectrometry titration (MST) techniques, with MST quantifying a significant reduction in dead Li and LiH within the modified SEI. Benefiting from the surface reconstruction strategy, a 5.8 Ah Li metal pouch cell achieves a high energy density of 518 Wh kg−1 (based on the total mass of the cell) with an ultra-lean carbonate electrolyte (1.12 g Ah−1) and maintains stable cycling over 100 cycles. Our findings on surface reconstruction for a high Li+ conductive hetero-grain boundary passivation layer point to a new pathway towards achieving stable cycling for energy dense Li metal batteries.

Abstract Image

通过SEI重构工程实现518 Wh kg高导电Li +异质晶界的稳定锂离子袋电池
碳酸盐电解质对锂(Li)金属具有很强的腐蚀性,导致副反应、枝晶生长和死锂,这是在贫电解质条件下实现稳定高能锂金属电池的关键挑战。在这里,我们引入了一种分子表面重建策略来设计一种富含LiF/ li2o的固体电解质界面(SEI),该界面具有高Li +导电性异晶界。通过在锂金属表面喷涂氟化醚基羧酸(PFOA),我们消除了天然氧化层,设计了一种自优化的无机界面,将优异的机械稳健性和Li +沿异质晶界的快速传输结合在一起。显微镜观察和同位素标记质谱滴定(MST)技术证明,这种双功能间相有效地抑制了锂枝晶的生长和死锂的积累,MST量化了改性SEI中死锂和LiH的显著减少。得益于表面重建策略,5.8 Ah Li的金属袋状电池在超稀薄碳酸盐电解质(1.12 g Ah-1)下实现了518 Wh kg-1的高能量密度(基于电池总质量),并在100次循环中保持稳定循环。我们在高Li+导电性异质晶界钝化层表面重建方面的发现,为实现能量密度锂金属电池的稳定循环指明了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信