Lubricant infiltration physics and enabling technology in machining: modeling and machinability

IF 8.2 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wenyi Li, Libin Wu, Yanbin Zhang, Xin Cui, Fan Zhang, Liandi Xu, Haiyuan Xin, Rui Xue, Qingfeng Bie, Guanqun Li, Changhe Li
{"title":"Lubricant infiltration physics and enabling technology in machining: modeling and machinability","authors":"Wenyi Li, Libin Wu, Yanbin Zhang, Xin Cui, Fan Zhang, Liandi Xu, Haiyuan Xin, Rui Xue, Qingfeng Bie, Guanqun Li, Changhe Li","doi":"10.26599/frict.2025.9441173","DOIUrl":null,"url":null,"abstract":"<p>Lubricants are essential in machining as they significantly affect workpiece surface quality. However, due to the diversity of lubricant types and the complexity of infiltration physics, there remains an urgent need to improve infiltration performance based on the underlying physical processes. This paper systematically reviews the infiltration mechanisms of lubricants under different machining conditions. First, the influence of lubricant morphological characteristics and physicochemical properties on infiltration behavior is analyzed at the microscale, clarifying the mechanisms governing different states, including liquid, gas, and multiphase flow. Second, the interaction between tool geometric boundary conditions and lubricant infiltration behavior is examined, providing an evaluation of infiltration performance at the workpiece surface. Finally, the microscopic mechanisms of lubricant behavior under the influence of typical energy fields are discussed, and the regulation effect of these fields on lubricant infiltration is revealed. This review offers a theoretical reference for advancing the understanding of lubricant infiltration mechanisms and improving infiltration performance in machining.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"13 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441173","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lubricants are essential in machining as they significantly affect workpiece surface quality. However, due to the diversity of lubricant types and the complexity of infiltration physics, there remains an urgent need to improve infiltration performance based on the underlying physical processes. This paper systematically reviews the infiltration mechanisms of lubricants under different machining conditions. First, the influence of lubricant morphological characteristics and physicochemical properties on infiltration behavior is analyzed at the microscale, clarifying the mechanisms governing different states, including liquid, gas, and multiphase flow. Second, the interaction between tool geometric boundary conditions and lubricant infiltration behavior is examined, providing an evaluation of infiltration performance at the workpiece surface. Finally, the microscopic mechanisms of lubricant behavior under the influence of typical energy fields are discussed, and the regulation effect of these fields on lubricant infiltration is revealed. This review offers a theoretical reference for advancing the understanding of lubricant infiltration mechanisms and improving infiltration performance in machining.

Abstract Image

加工中的润滑油渗透物理和使能技术:建模和可加工性
润滑剂在机械加工中是必不可少的,因为它对工件表面质量有很大的影响。然而,由于润滑剂类型的多样性和渗透物理的复杂性,仍然迫切需要基于潜在的物理过程来提高渗透性能。本文系统地综述了润滑油在不同加工条件下的渗透机理。首先,在微观尺度上分析了润滑油形态特征和理化性质对渗透行为的影响,阐明了液体、气体和多相流等不同状态下的渗透机理。其次,研究了刀具几何边界条件与润滑剂渗透行为之间的相互作用,为工件表面的渗透性能提供了评估。最后,讨论了典型能量场影响下润滑剂微观行为的机理,揭示了这些能量场对润滑剂渗透的调节作用。本文的研究为进一步认识润滑油的渗渗机理,提高加工过程中的渗渗性能提供了理论参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信