{"title":"Advanced backcross selection for resistance to Fusarium ear rot and fumonisin contamination in maize","authors":"Eric N. Butoto, James B. Holland","doi":"10.1002/csc2.70147","DOIUrl":null,"url":null,"abstract":"<p>Ear rots and mycotoxin contamination of grain in maize (<i>Zea mays</i> L.) pose a threat to food production and safety, best ameliorated by breeding for resistance. In this study, we introgressed alleles conferring resistance to Fusarium ear rot and fumonisin contamination from GE440, a highly resistant inbred with poor agronomic performance, into LH132, a more susceptible but agronomically elite commercial inbred, to create lines with improved disease resistance without compromising grain yield or other agronomic traits. On average, the selected backcross lines and their topcross hybrids had less Fusarium ear rot and fumonisin content than their recurrent parent or its topcross hybrid, respectively. The most resistant backcross lines were superior to LH132 for resistance and produced hybrids with similar yield and agronomic performance. The backcross-derived lines were genotyped, facilitating the identification of two introgression regions conferring resistance to Fusarium ear rot and one for fumonisin content. These regions are large and contain hundreds of genes but are concordant with previous Fusarium ear rot resistance mapping studies, and the lines developed here can be used for higher resolution genetic mapping.</p>","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"65 5","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/csc2.70147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://acsess.onlinelibrary.wiley.com/doi/10.1002/csc2.70147","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Ear rots and mycotoxin contamination of grain in maize (Zea mays L.) pose a threat to food production and safety, best ameliorated by breeding for resistance. In this study, we introgressed alleles conferring resistance to Fusarium ear rot and fumonisin contamination from GE440, a highly resistant inbred with poor agronomic performance, into LH132, a more susceptible but agronomically elite commercial inbred, to create lines with improved disease resistance without compromising grain yield or other agronomic traits. On average, the selected backcross lines and their topcross hybrids had less Fusarium ear rot and fumonisin content than their recurrent parent or its topcross hybrid, respectively. The most resistant backcross lines were superior to LH132 for resistance and produced hybrids with similar yield and agronomic performance. The backcross-derived lines were genotyped, facilitating the identification of two introgression regions conferring resistance to Fusarium ear rot and one for fumonisin content. These regions are large and contain hundreds of genes but are concordant with previous Fusarium ear rot resistance mapping studies, and the lines developed here can be used for higher resolution genetic mapping.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.