Yani Wang, Ruobing Xu, Pinshun Ren, Yalin Wang, Haobin Chen, Wenjun Wu, Xingwu Yang
{"title":"Effects of heavy load temperature rise on the dynamic charge transport characteristics of XLPE/SiR heterogeneous insulation","authors":"Yani Wang, Ruobing Xu, Pinshun Ren, Yalin Wang, Haobin Chen, Wenjun Wu, Xingwu Yang","doi":"10.1049/hve2.70026","DOIUrl":null,"url":null,"abstract":"<p>The space charge accumulation in the heterogeneous insulation composed of cross-linked polyethylene (XLPE) cable and silicone rubber (SiR) accessory poses a serious threat to the safe operation of the high voltage direct current (HVDC) cable. When the cable is in heavy load, the charge transport behaviour in XLPE/SiR becomes more complicated due to the high temperature. In order to investigate the charge transport characteristics of XLPE/SiR under heavy load condition, the simultaneous measurement of space charge and relaxation current is performed on XLPE/SiR at both 70°C and 30°C with different polarities. The results show that the polarity of the interface charges in XLPE/SiR is always consistent with that of the SiR side electrode, and the influence of high temperature (70°C) caused by heavy load on the interface charge accumulation of XLPE/SiR is reversed at different polarities. The interface trap depth of XLPE/SiR is consistently greater than the bulk trap depths in both XLPE and SiR. When at high temperature of 70°C, the depth and density of interface traps increase, and the bulk traps in XLPE and SiR also exhibit increased depth. The component of polarisation relaxation current associated with space charge activity increases and exhibits longer decay time at 70°C, indicating more active and complex charge trapping-detrapping activities under heavy load condition. In this paper, an advanced simultaneous measurement is used to correlate the internal charge distribution with the external current for analysis, and the charge transport characteristics of XLPE/SiR under heavy load condition is revealed. The results can provide reference for the operation and maintenance of HVDC cable, and can also provide a basis for the space charge regulation of heterogeneous insulation at HVDC cable accessories.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"10 4","pages":"964-975"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.70026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/hve2.70026","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The space charge accumulation in the heterogeneous insulation composed of cross-linked polyethylene (XLPE) cable and silicone rubber (SiR) accessory poses a serious threat to the safe operation of the high voltage direct current (HVDC) cable. When the cable is in heavy load, the charge transport behaviour in XLPE/SiR becomes more complicated due to the high temperature. In order to investigate the charge transport characteristics of XLPE/SiR under heavy load condition, the simultaneous measurement of space charge and relaxation current is performed on XLPE/SiR at both 70°C and 30°C with different polarities. The results show that the polarity of the interface charges in XLPE/SiR is always consistent with that of the SiR side electrode, and the influence of high temperature (70°C) caused by heavy load on the interface charge accumulation of XLPE/SiR is reversed at different polarities. The interface trap depth of XLPE/SiR is consistently greater than the bulk trap depths in both XLPE and SiR. When at high temperature of 70°C, the depth and density of interface traps increase, and the bulk traps in XLPE and SiR also exhibit increased depth. The component of polarisation relaxation current associated with space charge activity increases and exhibits longer decay time at 70°C, indicating more active and complex charge trapping-detrapping activities under heavy load condition. In this paper, an advanced simultaneous measurement is used to correlate the internal charge distribution with the external current for analysis, and the charge transport characteristics of XLPE/SiR under heavy load condition is revealed. The results can provide reference for the operation and maintenance of HVDC cable, and can also provide a basis for the space charge regulation of heterogeneous insulation at HVDC cable accessories.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf