Jeffrey Teillet, Anne Pradines, Naima Hanoun, Jules Edwards, Pierre Joseph, Anne-Marie Gué, Aurélien Bancaud, Pierre Cordelier
{"title":"Detection of EGFR mutations at pM concentration in ten minutes using a microfluidic concentration and separation module","authors":"Jeffrey Teillet, Anne Pradines, Naima Hanoun, Jules Edwards, Pierre Joseph, Anne-Marie Gué, Aurélien Bancaud, Pierre Cordelier","doi":"10.1007/s10544-025-00767-w","DOIUrl":null,"url":null,"abstract":"<div><p>Epidermal growth factor receptor (EGFR) mutation detection is now commonly used in the management of cancer patients, particularly those diagnosed with non-small cell lung cancer. Molecular beacon-based sensing is direct and rapid, but its sensitivity is low. Conversely, high-sensitivity detection methodologies based on amplification are robust and sensitive but are limited by relatively require long turnaround times. In this study, we utilized a size-resolved, molecular beacon-based strategy for the rapid detection of EGFR genomic alterations, specifically exon 19 deletions and L858R point mutation. This technology combines a concentration and separation module, which allows us to successfully demonstrate the detection of deletions and point mutations of EGFR in five minutes with a mutant allele sensitivity of 10%. The use of a dual-color detection insures fast detection with a reduced risk of false positives. This work represents a first step toward the fast and specific detection of genetic mutations to improve the management of patients with hard-to-treat tumors.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"27 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10544-025-00767-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-025-00767-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Epidermal growth factor receptor (EGFR) mutation detection is now commonly used in the management of cancer patients, particularly those diagnosed with non-small cell lung cancer. Molecular beacon-based sensing is direct and rapid, but its sensitivity is low. Conversely, high-sensitivity detection methodologies based on amplification are robust and sensitive but are limited by relatively require long turnaround times. In this study, we utilized a size-resolved, molecular beacon-based strategy for the rapid detection of EGFR genomic alterations, specifically exon 19 deletions and L858R point mutation. This technology combines a concentration and separation module, which allows us to successfully demonstrate the detection of deletions and point mutations of EGFR in five minutes with a mutant allele sensitivity of 10%. The use of a dual-color detection insures fast detection with a reduced risk of false positives. This work represents a first step toward the fast and specific detection of genetic mutations to improve the management of patients with hard-to-treat tumors.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.