Effect of Temperature on the Diffusion of the \({\text{A}}{{{\text{l}}}_{2}}{\text{Cl}}_{7}^{ - }\) Anion in a Low-Temperature Triethylamine Hydrochloride–Aluminum Chloride Melt

IF 0.3 Q4 METALLURGY & METALLURGICAL ENGINEERING
A. V. Borozdin, V. A. Elterman
{"title":"Effect of Temperature on the Diffusion of the \\({\\text{A}}{{{\\text{l}}}_{2}}{\\text{Cl}}_{7}^{ - }\\) Anion in a Low-Temperature Triethylamine Hydrochloride–Aluminum Chloride Melt","authors":"A. V. Borozdin,&nbsp;V. A. Elterman","doi":"10.1134/S0036029525701137","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—Aluminum-ion batteries (AIBs) are of interest for scientific community due to their low cost, fire safety, and high aluminum content in the Earth’s crust. A low-temperature chloroaluminate melt (or ionic liquid (IL)) based on triethylamine hydrochloride (Et<sub>3</sub>NHCl) is considered as one of the promising electrolytes for use in AIB. In this work, the diffusion coefficients of the <span>\\({\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{7}^{ - }\\)</span> ion (<span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span>) have been determined by chronopotentiometry in the temperature range from 322 to 413 K at the AlCl<sub>3</sub>-to-EtNhCl molar ratio from 1.1 to 1.95. The transport process of <span>\\({\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{7}^{ - }\\)</span> to the Al electrode surface proceeds according to the model of linear semi-infinite diffusion over the entire temperature and concentration ranges. The <span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span> diffusion coefficient depends on the aluminum trichloride content in the melt, and the temperature dependences of <span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span> do not obey the Arrhenius law at <i>T</i> = 323–344 K. However, when the temperature exceeds 344 K, the dependences of <span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span> in the Arrhenius coordinates are linear, and <span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span> does not depend on the <span>\\({\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{7}^{ - }\\)</span> ion concentration at a fixed temperature. This behavior is likely to be caused by the glass-forming nature of the IL at low temperatures. The obtained values of the ideal glass transition temperature are in good agreement with the Et<sub>3</sub>NHCl–AlCl<sub>3</sub> phase diagram presented in the literature. The activation energy of <span>\\({{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span> calculated from the linear portion of the dependence <span>\\(\\ln {{D}_{{{\\text{A}}{{{\\text{l}}}_{{\\text{2}}}}{\\text{Cl}}_{{\\text{7}}}^{{\\text{-}}}}}}\\)</span>–1000<i>T</i><sup>–1</sup> is 13.4 ± 0.8 kJ mol<sup>–1</sup> at <i>T</i> &gt; 344 K.</p>","PeriodicalId":769,"journal":{"name":"Russian Metallurgy (Metally)","volume":"2025 2","pages":"274 - 278"},"PeriodicalIF":0.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Metallurgy (Metally)","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0036029525701137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract—Aluminum-ion batteries (AIBs) are of interest for scientific community due to their low cost, fire safety, and high aluminum content in the Earth’s crust. A low-temperature chloroaluminate melt (or ionic liquid (IL)) based on triethylamine hydrochloride (Et3NHCl) is considered as one of the promising electrolytes for use in AIB. In this work, the diffusion coefficients of the \({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\) ion (\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)) have been determined by chronopotentiometry in the temperature range from 322 to 413 K at the AlCl3-to-EtNhCl molar ratio from 1.1 to 1.95. The transport process of \({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\) to the Al electrode surface proceeds according to the model of linear semi-infinite diffusion over the entire temperature and concentration ranges. The \({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) diffusion coefficient depends on the aluminum trichloride content in the melt, and the temperature dependences of \({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) do not obey the Arrhenius law at T = 323–344 K. However, when the temperature exceeds 344 K, the dependences of \({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) in the Arrhenius coordinates are linear, and \({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) does not depend on the \({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\) ion concentration at a fixed temperature. This behavior is likely to be caused by the glass-forming nature of the IL at low temperatures. The obtained values of the ideal glass transition temperature are in good agreement with the Et3NHCl–AlCl3 phase diagram presented in the literature. The activation energy of \({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) calculated from the linear portion of the dependence \(\ln {{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)–1000T–1 is 13.4 ± 0.8 kJ mol–1 at T > 344 K.

Abstract Image

低温三乙胺-氯化铝熔体中温度对\({\text{A}}{{{\text{l}}}_{2}}{\text{Cl}}_{7}^{ - }\)阴离子扩散的影响
摘要:铝离子电池(AIBs)因其成本低、防火安全以及地壳中铝含量高而受到科学界的关注。基于盐酸三乙胺(Et3NHCl)的低温氯铝酸盐熔体(或离子液体(IL))被认为是一种很有前途的AIB电解质。在这项工作中,用时间电位法测定了\({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\)离子(\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\))在322 ~ 413 K温度范围内,alcl3与etnhcl摩尔比为1.1 ~ 1.95时的扩散系数。在整个温度和浓度范围内,\({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\)向Al电极表面的输运过程按照线性半无限扩散模型进行。\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)扩散系数取决于熔体中三氯化铝的含量,在T = 323-344 K时,\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)的温度依赖性不符合阿伦尼乌斯定律。然而,当温度超过344 K时,\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)在Arrhenius坐标系中的依赖关系是线性的,并且\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)不依赖于固定温度下的\({\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{7}^{ - }\)离子浓度。这种行为可能是由IL在低温下的玻璃化性质引起的。得到的理想玻璃化转变温度值与文献中Et3NHCl-AlCl3相图吻合较好。根据依赖性\(\ln {{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\) -1000T-1的线性部分计算得到\({{D}_{{{\text{A}}{{{\text{l}}}_{{\text{2}}}}{\text{Cl}}_{{\text{7}}}^{{\text{-}}}}}}\)在T &gt; 344 K时的活化能为13.4±0.8 kJ mol-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Metallurgy (Metally)
Russian Metallurgy (Metally) METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
0.70
自引率
25.00%
发文量
140
期刊介绍: Russian Metallurgy (Metally)  publishes results of original experimental and theoretical research in the form of reviews and regular articles devoted to topical problems of metallurgy, physical metallurgy, and treatment of ferrous, nonferrous, rare, and other metals and alloys, intermetallic compounds, and metallic composite materials. The journal focuses on physicochemical properties of metallurgical materials (ores, slags, matters, and melts of metals and alloys); physicochemical processes (thermodynamics and kinetics of pyrometallurgical, hydrometallurgical, electrochemical, and other processes); theoretical metallurgy; metal forming; thermoplastic and thermochemical treatment; computation and experimental determination of phase diagrams and thermokinetic diagrams; mechanisms and kinetics of phase transitions in metallic materials; relations between the chemical composition, phase and structural states of materials and their physicochemical and service properties; interaction between metallic materials and external media; and effects of radiation on these materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信