Xiaofei Liao;Dixian Zhao;Chenyu Xu;Hao Gong;Wendi Chen;Xiaohu You
{"title":"A 3.9-8.2-GHz Wideband Frequency Synthesizer With an Inductive Multiplexing Output Network for SATCOM Applications","authors":"Xiaofei Liao;Dixian Zhao;Chenyu Xu;Hao Gong;Wendi Chen;Xiaohu You","doi":"10.1109/TCSII.2025.3590593","DOIUrl":null,"url":null,"abstract":"This brief presents a wideband frequency synthesizer with 3.9 to 8.2 GHz continuous frequency coverage for satellite communication applications. The core fractional-N phase locked loop utilizes four LC-VCOs achieving a 4.3 GHz tuning range with a 50-MHz reference frequency. The frequency mapping of the four VCOs, along with module-level parameter optimization, is performed to maintain a stable figure of merit and minimize loop jitter across the entire tuning range. A high-isolation low-loss inductive multiplexing output technique is proposed, which uses only one active buffer to drive both the internal loop and the external load, significantly reducing power consumption. Moreover, an on-chip active loop filter is implemented, reducing the capacitance area by 80% and enhancing chip integration. Fabricated in a 65-nm CMOS technology, the frequency synthesizer occupies a chip area of 2.28 mm2 while consumes power of 25–33.5 mW. The phase noise reaches –123.72 dBc/Hz and –116.31 dBc/Hz at 1-MHz offset under 3.9- and 8.2-GHz carriers, respectively. Measured reference and fractional spurs remain below –65 and –55 dBc.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 9","pages":"1163-1167"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11084881/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This brief presents a wideband frequency synthesizer with 3.9 to 8.2 GHz continuous frequency coverage for satellite communication applications. The core fractional-N phase locked loop utilizes four LC-VCOs achieving a 4.3 GHz tuning range with a 50-MHz reference frequency. The frequency mapping of the four VCOs, along with module-level parameter optimization, is performed to maintain a stable figure of merit and minimize loop jitter across the entire tuning range. A high-isolation low-loss inductive multiplexing output technique is proposed, which uses only one active buffer to drive both the internal loop and the external load, significantly reducing power consumption. Moreover, an on-chip active loop filter is implemented, reducing the capacitance area by 80% and enhancing chip integration. Fabricated in a 65-nm CMOS technology, the frequency synthesizer occupies a chip area of 2.28 mm2 while consumes power of 25–33.5 mW. The phase noise reaches –123.72 dBc/Hz and –116.31 dBc/Hz at 1-MHz offset under 3.9- and 8.2-GHz carriers, respectively. Measured reference and fractional spurs remain below –65 and –55 dBc.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.