Data-Driven Near-Optimal Reduced Tracking Control of SPSs With Application to PMSM

IF 4.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yao Xu;Chunyu Yang;Gonghe Li;Ju H. Park
{"title":"Data-Driven Near-Optimal Reduced Tracking Control of SPSs With Application to PMSM","authors":"Yao Xu;Chunyu Yang;Gonghe Li;Ju H. Park","doi":"10.1109/TCSII.2025.3590689","DOIUrl":null,"url":null,"abstract":"This brief focuses on the data-driven near-optimal reduced trackingcontrol problem of linear time-invariant (LTI) singularly perturbed systems (SPSs) from noisy data. Based on singular perturbation theory (SPT), the reduced subsystem of the SPSs is obtained, further, an augmented error system is constructed and an optimal trackingcontrol (OTC) problem is formulated. Then, the integral version of the continuous-time augmented error system is constructed to avoid the error-prone problem of derivative calculation. Next, the closed-loop augmented error system is parameterized by the system I/O data, and the data-based semi-definite program (SDP) is proposed for the OTC problem. In addition, considering that the I/O data of the virtual reduced system are actually unmeasurable, the virtual reduced system is reconstructed by the I/O data of the original system, and the system performance is analyzed. Finally, the experiment of speed tracking control of permanent magnet synchronous motor (PMSM) verifies the effectiveness of the proposed data-driven control scheme.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 9","pages":"1228-1232"},"PeriodicalIF":4.9000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11087247/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This brief focuses on the data-driven near-optimal reduced trackingcontrol problem of linear time-invariant (LTI) singularly perturbed systems (SPSs) from noisy data. Based on singular perturbation theory (SPT), the reduced subsystem of the SPSs is obtained, further, an augmented error system is constructed and an optimal trackingcontrol (OTC) problem is formulated. Then, the integral version of the continuous-time augmented error system is constructed to avoid the error-prone problem of derivative calculation. Next, the closed-loop augmented error system is parameterized by the system I/O data, and the data-based semi-definite program (SDP) is proposed for the OTC problem. In addition, considering that the I/O data of the virtual reduced system are actually unmeasurable, the virtual reduced system is reconstructed by the I/O data of the original system, and the system performance is analyzed. Finally, the experiment of speed tracking control of permanent magnet synchronous motor (PMSM) verifies the effectiveness of the proposed data-driven control scheme.
SPSs数据驱动的近最优简化跟踪控制及其在永磁同步电机中的应用
本文主要讨论了基于噪声数据的线性时不变奇摄动系统的数据驱动的近最优简化跟踪控制问题。基于奇异摄动理论(SPT),得到了系统的约简子系统,构造了增广误差系统,提出了最优跟踪控制(OTC)问题。然后,构造了连续时间增广误差系统的积分版本,避免了导数计算容易出错的问题。其次,利用系统I/O数据对闭环增广误差系统进行参数化,并针对OTC问题提出了基于数据的半确定规划(SDP)。此外,考虑到虚拟约简系统的I/O数据实际上是不可测量的,利用原系统的I/O数据重构虚拟约简系统,并对系统性能进行分析。最后,通过对永磁同步电机速度跟踪控制的实验,验证了所提数据驱动控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信