Embedded, Multimodal (TEER, EIS, Transparency) Sensing Chips for In Vitro Cellular Models

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Surbhi Tidke;Maria Tregansin;Joseph Potter;Chris Hatcher;Adrienne Watson;Swaminathan Rajaraman
{"title":"Embedded, Multimodal (TEER, EIS, Transparency) Sensing Chips for In Vitro Cellular Models","authors":"Surbhi Tidke;Maria Tregansin;Joseph Potter;Chris Hatcher;Adrienne Watson;Swaminathan Rajaraman","doi":"10.1109/LSENS.2025.3597464","DOIUrl":null,"url":null,"abstract":"In this letter, we introduce a pioneering sensing system for multimodal sensing that utilizes microfabricated electrodes fabricated out of several electrode materials on glass wafers, achieving an impressive 98% fabrication yield. Our approach leverages a direct-write laser lithography process, where meticulous tuning of process parameters results in well-defined undercut profiles and a highly efficient lift-off process. The glass chips are subsequently packaged at the wafer-level using 3D-printed culture wells and soldered connections. Employing full-spectrum electrical impedance spectroscopy measurements, we characterized the electrode materials and extracted the 12.5 Hz value to determine baseline transendothelial/transepithelial electrical resistance values without cells of 6356 Ω·cm<sup>2</sup> for indium tin oxide (ITO), 4834 Ω·cm<sup>2</sup> for Ti/Au, and 5522 Ω·cm<sup>2</sup> for Ti/Pt. These measurements represent the first direct, quantitative comparison of these electrode materials under acellular conditions, establishing a robust electrical baseline for future biological model integration. In addition, the high transparency of ITO (83.37%) demonstrates multimodal sensing that combines both electrical and optical interrogation, paving the way for comprehensive biosensing applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11125483/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we introduce a pioneering sensing system for multimodal sensing that utilizes microfabricated electrodes fabricated out of several electrode materials on glass wafers, achieving an impressive 98% fabrication yield. Our approach leverages a direct-write laser lithography process, where meticulous tuning of process parameters results in well-defined undercut profiles and a highly efficient lift-off process. The glass chips are subsequently packaged at the wafer-level using 3D-printed culture wells and soldered connections. Employing full-spectrum electrical impedance spectroscopy measurements, we characterized the electrode materials and extracted the 12.5 Hz value to determine baseline transendothelial/transepithelial electrical resistance values without cells of 6356 Ω·cm2 for indium tin oxide (ITO), 4834 Ω·cm2 for Ti/Au, and 5522 Ω·cm2 for Ti/Pt. These measurements represent the first direct, quantitative comparison of these electrode materials under acellular conditions, establishing a robust electrical baseline for future biological model integration. In addition, the high transparency of ITO (83.37%) demonstrates multimodal sensing that combines both electrical and optical interrogation, paving the way for comprehensive biosensing applications.
嵌入式,多模态(TEER, EIS,透明度)传感芯片体外细胞模型
在这封信中,我们介绍了一种开创性的多模态传感系统,该系统利用在玻璃晶圆上由几种电极材料制成的微制造电极,实现了令人印象深刻的98%的制造良率。我们的方法利用直接写入激光光刻工艺,其中细致的工艺参数调整导致明确的下切轮廓和高效的提升过程。玻璃芯片随后使用3d打印培养孔和焊接连接在晶圆级封装。采用全谱电阻抗谱测量,我们对电极材料进行了表征,并提取了12.5 Hz值,以确定无细胞时的基线跨内皮/跨上皮电阻值:氧化铟锡(ITO)为6356 Ω·cm2, Ti/Au为4834 Ω·cm2, Ti/Pt为5522 Ω·cm2。这些测量代表了这些电极材料在非细胞条件下的第一次直接定量比较,为未来的生物模型集成建立了一个强大的电基线。此外,ITO的高透明度(83.37%)显示了结合电和光探测的多模态传感,为全面的生物传感应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信