Application of fuzzy logic controls on hyperbolic differential equations

Q1 Mathematics
Ruchika Lochab , Luckshay Batra
{"title":"Application of fuzzy logic controls on hyperbolic differential equations","authors":"Ruchika Lochab ,&nbsp;Luckshay Batra","doi":"10.1016/j.padiff.2025.101278","DOIUrl":null,"url":null,"abstract":"<div><div>The selection of suitable fuzzy logic control (FLC) systems for stabilizing hyperbolic conservation laws (HCLs) remains an open issue in computational fluid dynamics (CFD), particularly for shock-capturing schemes. This work addresses this gap by adopting a dual methodological strategy: (i) a systematic review of over 50 studies (2000–2025) on flux-limiting FLC approaches, and (ii) a comparative benchmark of Mamdani- and Sugeno-type FLCs applied to discontinuous solutions of HCLs. Our results demonstrate that, using weighted average defuzzification, Sugeno-type systems achieve approximately a 20% reduction in mean square error compared to the Mamdani centroid-based method in shock-dominated regimes. This performance gain aligns with adaptive CFD practices that prioritize rule-based, computationally inexpensive smoothing. By integrating theoretical analysis with experimental validation, this work strengthens the mathematical foundations of fuzzy control in PDE-driven modelling.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101278"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The selection of suitable fuzzy logic control (FLC) systems for stabilizing hyperbolic conservation laws (HCLs) remains an open issue in computational fluid dynamics (CFD), particularly for shock-capturing schemes. This work addresses this gap by adopting a dual methodological strategy: (i) a systematic review of over 50 studies (2000–2025) on flux-limiting FLC approaches, and (ii) a comparative benchmark of Mamdani- and Sugeno-type FLCs applied to discontinuous solutions of HCLs. Our results demonstrate that, using weighted average defuzzification, Sugeno-type systems achieve approximately a 20% reduction in mean square error compared to the Mamdani centroid-based method in shock-dominated regimes. This performance gain aligns with adaptive CFD practices that prioritize rule-based, computationally inexpensive smoothing. By integrating theoretical analysis with experimental validation, this work strengthens the mathematical foundations of fuzzy control in PDE-driven modelling.
模糊逻辑控制在双曲型微分方程中的应用
在计算流体动力学(CFD)中,选择合适的模糊逻辑控制系统来稳定双曲守恒律(hcl)仍然是一个悬而未决的问题,特别是对于冲击捕获方案。这项工作通过采用双重方法策略来解决这一差距:(i)系统回顾了50多项关于通量限制FLC方法的研究(2000-2025),以及(ii) Mamdani型和sugeno型FLC应用于hcl不连续溶液的比较基准。我们的研究结果表明,与基于Mamdani质心的方法相比,使用加权平均去模糊化,sugeno型系统在冲击主导下的均方误差降低了约20%。这种性能增益与自适应CFD实践相一致,这些实践优先考虑基于规则的、计算成本低廉的平滑。通过理论分析和实验验证相结合,加强了pde驱动建模中模糊控制的数学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信