A comparative study on overtaking collisional ion-acoustic multi-soliton around the critical values in the sense of fractal and fractional differential operators

Q1 Mathematics
Salena Akther , M.G. Hafez , Shahrina Akter
{"title":"A comparative study on overtaking collisional ion-acoustic multi-soliton around the critical values in the sense of fractal and fractional differential operators","authors":"Salena Akther ,&nbsp;M.G. Hafez ,&nbsp;Shahrina Akter","doi":"10.1016/j.padiff.2025.101277","DOIUrl":null,"url":null,"abstract":"<div><div>The time–space fractional modified Korteweg de-Vries (TSF-mKdV) equation is considered to investigate the nonlinear overtaking ion-acoustic multi-solitons around the critical values of any specific physical parameter in an unmagnetized collisionless plasma. To do so, various fractional derivative operators are considered. The TSF-mKdV equation is actually obtained by applying the Agrawal technique to the typical mKdV equation. The Hirota’s direct bilinear approach is used to obtain the proposed multi-soliton solutions to the TSF-mKdV model equation. In the framework under study, the effects of the space–time fractional parameters and plasma parameters on the overtaking collision of multi-soliton wave propagation are examined.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101277"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125002049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The time–space fractional modified Korteweg de-Vries (TSF-mKdV) equation is considered to investigate the nonlinear overtaking ion-acoustic multi-solitons around the critical values of any specific physical parameter in an unmagnetized collisionless plasma. To do so, various fractional derivative operators are considered. The TSF-mKdV equation is actually obtained by applying the Agrawal technique to the typical mKdV equation. The Hirota’s direct bilinear approach is used to obtain the proposed multi-soliton solutions to the TSF-mKdV model equation. In the framework under study, the effects of the space–time fractional parameters and plasma parameters on the overtaking collision of multi-soliton wave propagation are examined.
分形和分数阶微分算子意义上碰撞离子声多孤子在临界值附近超车的比较研究
利用时间-空间分数阶修正Korteweg - de-Vries (TSF-mKdV)方程研究了非磁化无碰撞等离子体中任意特定物理参数临界值附近的非线性超车声多孤子。为此,考虑了各种分数阶导数算子。TSF-mKdV方程实际上是将Agrawal技术应用于典型的mKdV方程而得到的。利用Hirota的直接双线性方法得到了TSF-mKdV模型方程的多孤子解。在研究框架内,研究了时空分数参数和等离子体参数对多孤子波传播超车碰撞的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信