Handling errors in the response: Considerations for leveraging unsupervised or incomplete data for genetic evaluations

IF 2.2
Xiao-Lin Wu , John B. Cole , Andres Legarra , Kristen L. Parker Gaddis , João W. Dürr
{"title":"Handling errors in the response: Considerations for leveraging unsupervised or incomplete data for genetic evaluations","authors":"Xiao-Lin Wu ,&nbsp;John B. Cole ,&nbsp;Andres Legarra ,&nbsp;Kristen L. Parker Gaddis ,&nbsp;João W. Dürr","doi":"10.3168/jdsc.2024-0668","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate genetic evaluations rely on high-quality phenotypic data; however, measurement errors and data inconsistencies—such as those arising from unsupervised or incomplete sources—pose challenges to their reliability. This study investigates the effect of response errors on genetic evaluations across continuous and categorical traits. We introduce an additive measurement error model to illustrate how phenotypic errors influence genetic effects and variance estimation. Next, we examine a binary trait scenario, demonstrating the utility of sensitivity and specificity in adjusting observed incidence rates for misclassified data. To further illustrate genetic evaluation in the presence of misclassifications, we proposed a mixed effects liability model assuming unequal sensitivity and specificity or varied false-positive and false-negative rates. Our findings underscore the necessity of integrating measurement error models into genetic evaluation frameworks to reduce bias and enhance predictive accuracy.</div></div>","PeriodicalId":94061,"journal":{"name":"JDS communications","volume":"6 5","pages":"Pages 675-680"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JDS communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666910225000997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate genetic evaluations rely on high-quality phenotypic data; however, measurement errors and data inconsistencies—such as those arising from unsupervised or incomplete sources—pose challenges to their reliability. This study investigates the effect of response errors on genetic evaluations across continuous and categorical traits. We introduce an additive measurement error model to illustrate how phenotypic errors influence genetic effects and variance estimation. Next, we examine a binary trait scenario, demonstrating the utility of sensitivity and specificity in adjusting observed incidence rates for misclassified data. To further illustrate genetic evaluation in the presence of misclassifications, we proposed a mixed effects liability model assuming unequal sensitivity and specificity or varied false-positive and false-negative rates. Our findings underscore the necessity of integrating measurement error models into genetic evaluation frameworks to reduce bias and enhance predictive accuracy.
处理响应中的错误:利用无监督或不完整数据进行遗传评估的考虑
准确的遗传评估依赖于高质量的表型数据;然而,测量误差和数据不一致-例如由无监督或不完整的来源引起的误差-对其可靠性提出了挑战。本研究探讨了反应误差对连续性状和分类性状遗传评价的影响。我们引入了一个附加测量误差模型来说明表型误差如何影响遗传效应和方差估计。接下来,我们研究了一个二元特征场景,展示了敏感性和特异性在调整错误分类数据的观察发生率方面的效用。为了进一步说明存在错误分类的遗传评估,我们提出了一个混合效应责任模型,假设不相等的敏感性和特异性或不同的假阳性和假阴性率。我们的研究结果强调了将测量误差模型整合到遗传评估框架中以减少偏差和提高预测准确性的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JDS communications
JDS communications Animal Science and Zoology
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信