Robust topology optimization of continuous structures using the Bernstein approximation

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alfredo Canelas , Miguel Carrasco , Julio López
{"title":"Robust topology optimization of continuous structures using the Bernstein approximation","authors":"Alfredo Canelas ,&nbsp;Miguel Carrasco ,&nbsp;Julio López","doi":"10.1016/j.compstruc.2025.107939","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a robust formulation for the topology optimization of continuous structures. The objective is to determine the optimal distribution of a linear elastic material within a reference domain subjected to both stochastic and deterministic external loads. A key feature of this formulation is the incorporation of a failure probability constraint defined in terms of compliance. The Bernstein approximation is used to derive an upper bound on the failure probability, yielding a more tractable formulation. By using the Solid Isotropic Material with Penalization (SIMP) method, where the material density is the main design variable, we reformulate the original stochastic optimization problem into a standard nonlinear optimization problem. We develop a numerical algorithm to solve this reformulation by iteratively solving a sequence of linear conic subproblems, which can be efficiently handled in polynomial time via interior-point methods. Numerical experiments demonstrate the effectiveness of the proposed approach.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"317 ","pages":"Article 107939"},"PeriodicalIF":4.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925002974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust formulation for the topology optimization of continuous structures. The objective is to determine the optimal distribution of a linear elastic material within a reference domain subjected to both stochastic and deterministic external loads. A key feature of this formulation is the incorporation of a failure probability constraint defined in terms of compliance. The Bernstein approximation is used to derive an upper bound on the failure probability, yielding a more tractable formulation. By using the Solid Isotropic Material with Penalization (SIMP) method, where the material density is the main design variable, we reformulate the original stochastic optimization problem into a standard nonlinear optimization problem. We develop a numerical algorithm to solve this reformulation by iteratively solving a sequence of linear conic subproblems, which can be efficiently handled in polynomial time via interior-point methods. Numerical experiments demonstrate the effectiveness of the proposed approach.
基于Bernstein近似的连续结构鲁棒拓扑优化
我们提出了一个连续结构拓扑优化的鲁棒公式。目的是确定线性弹性材料在随机和确定性外载荷作用下在参考域中的最佳分布。该公式的一个关键特征是结合了根据遵从性定义的失效概率约束。Bernstein近似用于导出失效概率的上界,从而得到一个更易于处理的公式。采用固体各向同性材料惩罚法(SIMP),以材料密度为主要设计变量,将原随机优化问题转化为标准非线性优化问题。我们开发了一种数值算法,通过迭代求解一系列线性二次子问题来解决这个重新表述,这些子问题可以通过内点方法在多项式时间内有效地处理。数值实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信