Wei Liang , Rigele Ao , Mengli Xu , Mengying Jin , Meng Han , Zimo Wang , Wanwen Dang , Hongxu Wu , Weibo Lin , Yonghuan Zhen , Tao Xu , Yang An
{"title":"Bifunctional adECM bioscaffold with STIM1-ASCs and IGF-2 promotes functional masseter VML repair via myogenesis and fibrosis suppression","authors":"Wei Liang , Rigele Ao , Mengli Xu , Mengying Jin , Meng Han , Zimo Wang , Wanwen Dang , Hongxu Wu , Weibo Lin , Yonghuan Zhen , Tao Xu , Yang An","doi":"10.1016/j.bioactmat.2025.08.019","DOIUrl":null,"url":null,"abstract":"<div><div>Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial. In this study, we engineered an adipose-derived decellularized extracellular matrix (adECM) bioscaffold co-loaded with seed cells and bioactive factors. The seed cells were STIM1-overexpressing adipose-derived stem cells (STIM1-ASCs), which exhibit directed and highly efficient myogenic differentiation, addressing the low differentiation efficiency of conventional ASCs that limits muscle regeneration. The bioactive factor used was insulin-like growth factor-2 (IGF-2), which modulates the immune microenvironment by reprogramming mitochondrial energy metabolism to promote M2 macrophage polarization. These M2 macrophages further suppress fibroblast collagen deposition, alleviating muscle fibrosis, while simultaneously enhancing the myogenic differentiation of STIM1-ASCs and myotube formation. Together, the recellularized adECM bioscaffold harnesses these dual mechanisms (promoting functional muscle regeneration and anti-fibrotic repair) to significantly improve the recovery of volumetric muscle loss (VML) in the masseter. The development of this bifunctional bioscaffold offers a novel therapeutic strategy and theoretical foundation for treating severe craniofacial muscle injuries.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 466-491"},"PeriodicalIF":18.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X2500372X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Craniofacial muscles are essential for a variety of functions, including fine facial expressions. Severe injuries to these muscles often lead to more devastating consequences than limb muscle injuries, resulting in the loss of critical functions such as mastication and eyelid closure, as well as facial aesthetic impairment. Therefore, the development of targeted repair strategies for craniofacial muscle injuries is crucial. In this study, we engineered an adipose-derived decellularized extracellular matrix (adECM) bioscaffold co-loaded with seed cells and bioactive factors. The seed cells were STIM1-overexpressing adipose-derived stem cells (STIM1-ASCs), which exhibit directed and highly efficient myogenic differentiation, addressing the low differentiation efficiency of conventional ASCs that limits muscle regeneration. The bioactive factor used was insulin-like growth factor-2 (IGF-2), which modulates the immune microenvironment by reprogramming mitochondrial energy metabolism to promote M2 macrophage polarization. These M2 macrophages further suppress fibroblast collagen deposition, alleviating muscle fibrosis, while simultaneously enhancing the myogenic differentiation of STIM1-ASCs and myotube formation. Together, the recellularized adECM bioscaffold harnesses these dual mechanisms (promoting functional muscle regeneration and anti-fibrotic repair) to significantly improve the recovery of volumetric muscle loss (VML) in the masseter. The development of this bifunctional bioscaffold offers a novel therapeutic strategy and theoretical foundation for treating severe craniofacial muscle injuries.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.