{"title":"FaithfulNet: An explainable deep learning framework for autism diagnosis using structural MRI","authors":"D. Swainson Sujana, D. Peter Augustine","doi":"10.1016/j.brainres.2025.149904","DOIUrl":null,"url":null,"abstract":"<div><div>Explainable Artificial Intelligence (XAI) can decode the ‘black box’ models, enhancing trust in clinical decision-making. XAI makes the predictions of deep learning models interpretable, transparent, and trustworthy. This study employed XAI techniques to explain the predictions made by a deep learning-based model for diagnosing autism and identifying the memory regions responsible for children’s academic performance. This study utilized publicly available sMRI data from the ABIDE-II repository. First, a deep learning model, FaithfulNet, was developed to aid in the diagnosis of autism. Next, gradient-based class activation maps and the SHAP gradient explainer were employed to generate explanations for the model’s predictions. These explanations were integrated to develop a novel and faithful visual explanation, Faith_CAM. Finally, this faithful explanation was quantified using the pointing game score and analyzed with cortical and subcortical structure masks to identify the impaired brain regions in the autistic brain. This study achieved a classification accuracy of 99.74% with an AUC value of 1. In addition to facilitating autism diagnosis, this study assesses the degree of impairment in memory regions responsible for the children’s academic performance, thus contributing to the development of personalized treatment plans.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1866 ","pages":"Article 149904"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325004676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Explainable Artificial Intelligence (XAI) can decode the ‘black box’ models, enhancing trust in clinical decision-making. XAI makes the predictions of deep learning models interpretable, transparent, and trustworthy. This study employed XAI techniques to explain the predictions made by a deep learning-based model for diagnosing autism and identifying the memory regions responsible for children’s academic performance. This study utilized publicly available sMRI data from the ABIDE-II repository. First, a deep learning model, FaithfulNet, was developed to aid in the diagnosis of autism. Next, gradient-based class activation maps and the SHAP gradient explainer were employed to generate explanations for the model’s predictions. These explanations were integrated to develop a novel and faithful visual explanation, Faith_CAM. Finally, this faithful explanation was quantified using the pointing game score and analyzed with cortical and subcortical structure masks to identify the impaired brain regions in the autistic brain. This study achieved a classification accuracy of 99.74% with an AUC value of 1. In addition to facilitating autism diagnosis, this study assesses the degree of impairment in memory regions responsible for the children’s academic performance, thus contributing to the development of personalized treatment plans.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.