Complex magnetism with reentrant spin glass behavior and magnetodielectric effect in La2FeMnO6 double perovskite system

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Debasmita Bala , C.H. Prashanth , Bheema Lingam Chittari , Venimadhav Adyam , H.D. Yang , Krishnamurthy Jyothinagaram , D. Chandrasekhar Kakarla
{"title":"Complex magnetism with reentrant spin glass behavior and magnetodielectric effect in La2FeMnO6 double perovskite system","authors":"Debasmita Bala ,&nbsp;C.H. Prashanth ,&nbsp;Bheema Lingam Chittari ,&nbsp;Venimadhav Adyam ,&nbsp;H.D. Yang ,&nbsp;Krishnamurthy Jyothinagaram ,&nbsp;D. Chandrasekhar Kakarla","doi":"10.1016/j.cjph.2025.08.024","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the influence of magnetic frustration, arising from competing 3<em>d</em> ion interactions, on the structural, magnetic, and dielectric properties of La<sub>2</sub>FeMnO<sub>6</sub> (LFMO) double perovskite system. X-ray diffraction (XRD) and DC magnetization measurements confirm the presence of anti-site disorder (ASD), which contributes to complex magnetic behaviors. Multiple glassy transitions are observed: a non-interacting cluster-glass-like state below ∼280 K, an interacting cluster-glass-like state at <em>T</em><sub>f1</sub> ≈ 85 K, and a spin-glass state at <em>T</em><sub>f2</sub> ≈12 K. These transitions are further supported by magnetic memory effects and thermal relaxation analysis. AC susceptibility reveals frequency-dependent dispersion, which is explained using the critical slowing model near <em>T</em><sub>f1</sub> and <em>T</em><sub>f2</sub>​. Interparticle magnetic interactions are analyzed using isothermal remanent magnetization (IRM) and direct current demagnetization (DCD) techniques. Magnetoresistance (MR) and Maxwell–Wagner (MW) relaxation confirm a significant extrinsic magnetodielectric (MD) effect near <em>T</em> ≈ 240 K. Electronic structure calculations indicate a ferrimagnetic insulating state with a narrow band gap, attributed to the high-spin Fe³⁺ and intermediate-spin Mn³⁺ states. This work demonstrates how ASD and competing magnetic interactions drive multiple spin dynamics and distinct magnetic relaxations in the LFMO system.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"97 ","pages":"Pages 1187-1198"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325003302","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the influence of magnetic frustration, arising from competing 3d ion interactions, on the structural, magnetic, and dielectric properties of La2FeMnO6 (LFMO) double perovskite system. X-ray diffraction (XRD) and DC magnetization measurements confirm the presence of anti-site disorder (ASD), which contributes to complex magnetic behaviors. Multiple glassy transitions are observed: a non-interacting cluster-glass-like state below ∼280 K, an interacting cluster-glass-like state at Tf1 ≈ 85 K, and a spin-glass state at Tf2 ≈12 K. These transitions are further supported by magnetic memory effects and thermal relaxation analysis. AC susceptibility reveals frequency-dependent dispersion, which is explained using the critical slowing model near Tf1 and Tf2​. Interparticle magnetic interactions are analyzed using isothermal remanent magnetization (IRM) and direct current demagnetization (DCD) techniques. Magnetoresistance (MR) and Maxwell–Wagner (MW) relaxation confirm a significant extrinsic magnetodielectric (MD) effect near T ≈ 240 K. Electronic structure calculations indicate a ferrimagnetic insulating state with a narrow band gap, attributed to the high-spin Fe³⁺ and intermediate-spin Mn³⁺ states. This work demonstrates how ASD and competing magnetic interactions drive multiple spin dynamics and distinct magnetic relaxations in the LFMO system.

Abstract Image

La2FeMnO6双钙钛矿体系具有重入自旋玻璃行为的复磁性和磁介电效应
在这项研究中,我们研究了由相互竞争的三维离子相互作用引起的磁挫败对La2FeMnO6 (LFMO)双钙钛矿体系的结构、磁性和介电性能的影响。x射线衍射(XRD)和直流磁化测量证实了反位紊乱(ASD)的存在,这导致了复杂的磁性行为。观察到多个玻璃态转变:在~ 280 K以下为非相互作用的簇状玻璃态,在Tf1≈85 K处为相互作用的簇状玻璃态,在Tf2≈12 K处为自旋玻璃态。磁记忆效应和热松弛分析进一步支持了这些转变。交流磁化率揭示了频率相关的色散,这可以用Tf1和Tf2附近的临界慢化模型来解释。采用等温剩余磁化(IRM)和直流退磁(DCD)技术分析了粒子间的磁相互作用。磁阻(MR)和麦克斯韦-瓦格纳(MW)弛豫证实了在T≈240 K附近存在显著的外在磁介电(MD)效应。电子结构计算表明,由于高自旋Fe³+和中自旋Mn³+的状态,铁磁绝缘状态具有窄带隙。这项工作证明了ASD和竞争磁相互作用如何驱动LFMO系统中的多个自旋动力学和不同的磁弛豫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信