Differential evolution algorithm with local and global parameter adaptation

IF 8.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Lin Jin , Sheng Xin Zhang , Li Ming Zheng , Shao Yong Zheng
{"title":"Differential evolution algorithm with local and global parameter adaptation","authors":"Xiao Lin Jin ,&nbsp;Sheng Xin Zhang ,&nbsp;Li Ming Zheng ,&nbsp;Shao Yong Zheng","doi":"10.1016/j.swevo.2025.102125","DOIUrl":null,"url":null,"abstract":"<div><div>Differential Evolution (DE) is an effective meta-heuristic algorithm for numerical optimization. However, it suffers from persistent limitations such as sensitivity to parameter settings and premature convergence tendencies. This paper presents a novel Local and Global Parameter Adaptation (LGP) mechanism to mitigate these deficiencies through two key innovations. First, we develop a dual historical memory strategy that dynamically classifies successful control parameters into local or global historical record based on the Euclidean distance between parent-offspring vector pairs, the local and global historical memory are updated accordingly at each generation. Second, we introduce a parameter adaptation strategy that adaptively selects elements from appropriate historical memory for the generation of new control parameters to maintain exploitation-exploration balance. Extensive experimental validation demonstrates LGP’s effectiveness. When integrated with four DE variants, LGP consistently improves their performance, and the LGP-enhanced algorithm demonstrates remarkable performance compared with seven State-of-the-Art DE algorithms. Results confirm that LGP improves solution accuracy and prevents premature convergence simultaneously.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"98 ","pages":"Article 102125"},"PeriodicalIF":8.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225002834","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Differential Evolution (DE) is an effective meta-heuristic algorithm for numerical optimization. However, it suffers from persistent limitations such as sensitivity to parameter settings and premature convergence tendencies. This paper presents a novel Local and Global Parameter Adaptation (LGP) mechanism to mitigate these deficiencies through two key innovations. First, we develop a dual historical memory strategy that dynamically classifies successful control parameters into local or global historical record based on the Euclidean distance between parent-offspring vector pairs, the local and global historical memory are updated accordingly at each generation. Second, we introduce a parameter adaptation strategy that adaptively selects elements from appropriate historical memory for the generation of new control parameters to maintain exploitation-exploration balance. Extensive experimental validation demonstrates LGP’s effectiveness. When integrated with four DE variants, LGP consistently improves their performance, and the LGP-enhanced algorithm demonstrates remarkable performance compared with seven State-of-the-Art DE algorithms. Results confirm that LGP improves solution accuracy and prevents premature convergence simultaneously.
具有局部和全局参数自适应的差分进化算法
差分进化(DE)是一种有效的数值优化元启发式算法。然而,它受到持续的限制,如对参数设置的敏感性和过早收敛的趋势。本文提出了一种新的局部和全局参数自适应(LGP)机制,通过两个关键创新来缓解这些缺陷。首先,我们开发了一种双重历史记忆策略,该策略基于父-子代向量对之间的欧几里得距离将成功的控制参数动态分类为局部或全局历史记录,并在每一代中相应地更新局部和全局历史记忆。其次,我们引入了一种参数自适应策略,该策略自适应地从适当的历史记忆中选择元素来生成新的控制参数,以保持开发与勘探的平衡。大量的实验验证证明了LGP的有效性。当与四种DE变体集成时,LGP不断提高其性能,并且与七种最先进的DE算法相比,LGP增强算法表现出显着的性能。结果表明,LGP在提高求解精度的同时,防止了过早收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信