Multimodal synchronous monitoring platform for state of charge stratified thermal runaway in lithium iron phosphate batteries

Longfei Han , Mengdan Zhang , Xiangming Hu , Xinyue Yang , Jinfeng Li , Xiaoxuan Wei , Guoyu Han , Lihua Jiang , Yurui Deng , Yuan Cheng
{"title":"Multimodal synchronous monitoring platform for state of charge stratified thermal runaway in lithium iron phosphate batteries","authors":"Longfei Han ,&nbsp;Mengdan Zhang ,&nbsp;Xiangming Hu ,&nbsp;Xinyue Yang ,&nbsp;Jinfeng Li ,&nbsp;Xiaoxuan Wei ,&nbsp;Guoyu Han ,&nbsp;Lihua Jiang ,&nbsp;Yurui Deng ,&nbsp;Yuan Cheng","doi":"10.1016/j.nxener.2025.100398","DOIUrl":null,"url":null,"abstract":"<div><div>As a critical component in electric vehicles and energy storage systems, the dynamic relationship between state of charge (SOC) and thermal runaway (TR) propagation in LiFePO<sub>4</sub> batteries remains insufficiently understood. To address the critical limitation of existing TR testing methods in achieving synchronized multiparameter acquisition, this study developed an integrated multi-physics monitoring platform enabling spatiotemporal correlation analysis across the entire TR chain-from triggered initiation, heat/smoke release, gas speciation, 2 dimension temperature field reconstruction (infrared thermography), to TR process visualization. Systematic investigation of 18650-type LiFePO<sub>4</sub> cells across SOC gradients revealed distinct failure modes: 100% SOC cells exhibited predominant heat-driven failure with total heat release reaching 5.95 MJ/m² (a 5-fold increase versus 50% SOC cells), while 50% SOC cells demonstrated prioritized smoke aerosol release (520% higher particulate density than 100% SOC) with delayed combustible gas generation. This platform overcomes single-parameter detection constraints in conventional methods, providing multiscale experimental evidence to guide SOC-stratified safety protocols and phase-change thermal barrier material optimization for lithium-ion battery systems.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"9 ","pages":"Article 100398"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X25001619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As a critical component in electric vehicles and energy storage systems, the dynamic relationship between state of charge (SOC) and thermal runaway (TR) propagation in LiFePO4 batteries remains insufficiently understood. To address the critical limitation of existing TR testing methods in achieving synchronized multiparameter acquisition, this study developed an integrated multi-physics monitoring platform enabling spatiotemporal correlation analysis across the entire TR chain-from triggered initiation, heat/smoke release, gas speciation, 2 dimension temperature field reconstruction (infrared thermography), to TR process visualization. Systematic investigation of 18650-type LiFePO4 cells across SOC gradients revealed distinct failure modes: 100% SOC cells exhibited predominant heat-driven failure with total heat release reaching 5.95 MJ/m² (a 5-fold increase versus 50% SOC cells), while 50% SOC cells demonstrated prioritized smoke aerosol release (520% higher particulate density than 100% SOC) with delayed combustible gas generation. This platform overcomes single-parameter detection constraints in conventional methods, providing multiscale experimental evidence to guide SOC-stratified safety protocols and phase-change thermal barrier material optimization for lithium-ion battery systems.
磷酸铁锂电池电荷状态分层热失控多模态同步监测平台
作为电动汽车和储能系统的关键部件,LiFePO4电池的荷电状态(SOC)与热失控(TR)传播之间的动态关系尚不清楚。为了解决现有TR测试方法在实现同步多参数采集方面的关键限制,本研究开发了一个集成的多物理场监测平台,可以在整个TR链中进行时空相关性分析-从触发起始,热/烟雾释放,气体形态,二维温度场重建(红外热成像)到TR过程可视化。对18650型LiFePO4电池在SOC梯度上的系统研究揭示了不同的失效模式:100% SOC电池表现出主要的热驱动失效,总热释放达到5.95 MJ/m²(比50% SOC电池增加了5倍),而50% SOC电池表现出优先的烟雾气溶胶释放(颗粒密度比100% SOC高520%),可燃气体的产生延迟。该平台克服了传统方法中单参数检测的限制,为指导锂离子电池系统的soc分层安全协议和相变热障材料优化提供了多尺度实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信