Effect of re-melting strategies on pitting corrosion resistance in laser powder bed fusion Ni over-alloyed duplex stainless steel

IF 7.4 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yiqi Zhou , Xiaochang Xu , Peihu Yuan , Ke Sang , Wenqian Wang , Lili Li , Shikang Feng , Zhigang Yang , Chi Zhang
{"title":"Effect of re-melting strategies on pitting corrosion resistance in laser powder bed fusion Ni over-alloyed duplex stainless steel","authors":"Yiqi Zhou ,&nbsp;Xiaochang Xu ,&nbsp;Peihu Yuan ,&nbsp;Ke Sang ,&nbsp;Wenqian Wang ,&nbsp;Lili Li ,&nbsp;Shikang Feng ,&nbsp;Zhigang Yang ,&nbsp;Chi Zhang","doi":"10.1016/j.corsci.2025.113278","DOIUrl":null,"url":null,"abstract":"<div><div>Re-melting during laser powder bed fusion (LPBF) produced 22Cr duplex stainless steel (DSS) enhances austenite distribution homogeneity and elemental dispersion without altering the austenite content (∼35 %). Compared to LPBF 22Cr DSS without re-melt process (critical pitting potential, <em>E</em><sub><em>pit</em></sub> = 0.44 V<sub>SCE</sub> at 70°C; critical pitting temperature, CPT = 56.9°C), processing with three re-melting cycles increases <em>E</em><sub><em>pit</em></sub> by 0.15 V<sub>SCE</sub> and CPT by 3.8°C. This improvement in pitting corrosion resistance arises from expanded austenite coverage at grain boundaries—the primary pit nucleation sites. However, localised corrosion volume loss increases from 1.3 × 10<sup>8</sup> μm<sup>3</sup> (without re-melt) to 1.8 × 10<sup>8</sup> μm<sup>3</sup> (3 cycles re-melts), indicating accelerated corrosion propagation. Thus, re-melting exerts opposing effects on pitting nucleation resistance and pit growth kinetics. At lower potentials, austenite promotes pit growth in ferrite via galvanic coupling, evidenced by a 15 mV Volta potential difference (austenite &gt; ferrite) measured by scanning Kelvin probe force microscopy (SKPFM). Conversely, at higher potentials, pits propagate preferentially within melt-pools where both phases corrode. Potentials exceeding <em>E</em><sub><em>pit</em></sub> further induce intergranular corrosion.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113278"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006055","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Re-melting during laser powder bed fusion (LPBF) produced 22Cr duplex stainless steel (DSS) enhances austenite distribution homogeneity and elemental dispersion without altering the austenite content (∼35 %). Compared to LPBF 22Cr DSS without re-melt process (critical pitting potential, Epit = 0.44 VSCE at 70°C; critical pitting temperature, CPT = 56.9°C), processing with three re-melting cycles increases Epit by 0.15 VSCE and CPT by 3.8°C. This improvement in pitting corrosion resistance arises from expanded austenite coverage at grain boundaries—the primary pit nucleation sites. However, localised corrosion volume loss increases from 1.3 × 108 μm3 (without re-melt) to 1.8 × 108 μm3 (3 cycles re-melts), indicating accelerated corrosion propagation. Thus, re-melting exerts opposing effects on pitting nucleation resistance and pit growth kinetics. At lower potentials, austenite promotes pit growth in ferrite via galvanic coupling, evidenced by a 15 mV Volta potential difference (austenite > ferrite) measured by scanning Kelvin probe force microscopy (SKPFM). Conversely, at higher potentials, pits propagate preferentially within melt-pools where both phases corrode. Potentials exceeding Epit further induce intergranular corrosion.
重熔策略对激光粉末床熔合Ni超合金双相不锈钢耐点蚀性能的影响
激光粉末床熔合(LPBF)过程中的重熔提高了22Cr双相不锈钢(DSS)的奥氏体分布均匀性和元素弥散性,但不改变奥氏体含量(~ 35 %)。与不进行重熔处理的LPBF 22Cr DSS相比(70℃时临界点蚀电位Epit = 0.44 VSCE,临界点蚀温度CPT = 56.9℃),三次重熔处理使Epit提高0.15 VSCE, CPT提高3.8℃。这种抗点蚀性能的提高是由于晶界上奥氏体覆盖范围的扩大——这是主要的坑形核部位。然而,局部腐蚀体积损失从1.3 × 108 μm3(无再熔化)增加到1.8 × 108 μm3(3次再熔化),表明腐蚀扩展加速。因此,重熔对点蚀成核阻力和坑生长动力学产生相反的影响。在较低电位下,奥氏体通过电偶作用促进铁素体的凹点生长,通过扫描开尔文探针力显微镜(SKPFM)测量到的15 mV伏特电位差(奥氏体&铁素体)证明了这一点。相反,在高电位下,熔坑优先在两相都腐蚀的熔池中传播。电位超过Epit进一步诱发晶间腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corrosion Science
Corrosion Science 工程技术-材料科学:综合
CiteScore
13.60
自引率
18.10%
发文量
763
审稿时长
46 days
期刊介绍: Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies. This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信