{"title":"Construction of MDS Euclidean self-dual codes via multiple subsets","authors":"Weirong Meng , Weijun Fang , Fang-Wei Fu , Haiyan Zhou , Ziyi Gu","doi":"10.1016/j.ffa.2025.102718","DOIUrl":null,"url":null,"abstract":"<div><div>MDS self-dual codes have good algebraic structure, and their parameters are completely determined by the code length. In recent years, the construction of MDS Euclidean self-dual codes with new lengths has become an important issue in coding theory. In this paper, we are committed to constructing new MDS Euclidean self-dual codes via generalized Reed-Solomon (GRS) codes and their extended (EGRS) codes. The main effort of our constructions is to find suitable subsets of finite fields as the evaluation sets, ensuring that the corresponding (extended) GRS codes are Euclidean self-dual. Firstly, we present a method for selecting evaluation sets from multiple intersecting subsets and provide a theorem to guarantee that the chosen evaluation sets meet the desired criteria. Secondly, based on this theorem, we construct six new classes of MDS Euclidean self-dual codes using the norm function, as well as the union of three multiplicity subgroups and their cosets respectively. Finally, in our constructions, the proportion of possible MDS Euclidean self-dual codes exceeds 85%, which is much higher than previously reported results.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102718"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001480","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
MDS self-dual codes have good algebraic structure, and their parameters are completely determined by the code length. In recent years, the construction of MDS Euclidean self-dual codes with new lengths has become an important issue in coding theory. In this paper, we are committed to constructing new MDS Euclidean self-dual codes via generalized Reed-Solomon (GRS) codes and their extended (EGRS) codes. The main effort of our constructions is to find suitable subsets of finite fields as the evaluation sets, ensuring that the corresponding (extended) GRS codes are Euclidean self-dual. Firstly, we present a method for selecting evaluation sets from multiple intersecting subsets and provide a theorem to guarantee that the chosen evaluation sets meet the desired criteria. Secondly, based on this theorem, we construct six new classes of MDS Euclidean self-dual codes using the norm function, as well as the union of three multiplicity subgroups and their cosets respectively. Finally, in our constructions, the proportion of possible MDS Euclidean self-dual codes exceeds 85%, which is much higher than previously reported results.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.