Investigation of time-dependent magnetohydrodynamic flow and heat transfer of compressed penta-hybrid nanofluids: Biomedical applications

IF 2.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Davood Domiri Ganji, Mehdi Mahboobtosi, Fateme Nadalinia Chari
{"title":"Investigation of time-dependent magnetohydrodynamic flow and heat transfer of compressed penta-hybrid nanofluids: Biomedical applications","authors":"Davood Domiri Ganji,&nbsp;Mehdi Mahboobtosi,&nbsp;Fateme Nadalinia Chari","doi":"10.1016/j.jrras.2025.101915","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the time-dependent magnetohydrodynamic (MHD) flow and heat transfer characteristics of a penta-hybrid nanofluid (PHNF) confined between two porous parallel disks under a squeezing mechanism. The PHNF is composed of Al<sub>2</sub>O<sub>3</sub>, MgO, Cu, Ag, and MoS<sub>2</sub> nanoparticles suspended in blood, serving as the base fluid. The effects of key parameters including the squeezing number, suction/injection parameter, Eckert number, and nanoparticle shape factor on velocity, temperature, skin friction, and Nusselt number are comprehensively analyzed. The governing partial differential equations are transformed into ordinary differential equations via similarity transformations and solved numerically using Python. The results show that temperature profiles improve with increasing squeezing number, suction/injection, and Eckert number, indicating enhanced thermal transport. Furthermore, the Nusselt number increases with higher shape factor values, demonstrating improved heat transfer performance. The study offers new insights into the combined effects of complex nanofluid compositions and dynamic porous geometries, contributing to the optimization of thermal systems in biomedical and engineering applications.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 4","pages":"Article 101915"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725006272","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the time-dependent magnetohydrodynamic (MHD) flow and heat transfer characteristics of a penta-hybrid nanofluid (PHNF) confined between two porous parallel disks under a squeezing mechanism. The PHNF is composed of Al2O3, MgO, Cu, Ag, and MoS2 nanoparticles suspended in blood, serving as the base fluid. The effects of key parameters including the squeezing number, suction/injection parameter, Eckert number, and nanoparticle shape factor on velocity, temperature, skin friction, and Nusselt number are comprehensively analyzed. The governing partial differential equations are transformed into ordinary differential equations via similarity transformations and solved numerically using Python. The results show that temperature profiles improve with increasing squeezing number, suction/injection, and Eckert number, indicating enhanced thermal transport. Furthermore, the Nusselt number increases with higher shape factor values, demonstrating improved heat transfer performance. The study offers new insights into the combined effects of complex nanofluid compositions and dynamic porous geometries, contributing to the optimization of thermal systems in biomedical and engineering applications.
压缩五杂化纳米流体随时间磁流体动力学流动和传热的研究:生物医学应用
本文研究了在挤压机制下被限制在两个多孔平行圆盘之间的五杂化纳米流体(PHNF)的时变磁流体动力学(MHD)流动和传热特性。PHNF由悬浮在血液中的Al2O3、MgO、Cu、Ag和MoS2纳米颗粒组成,作为基础液。综合分析了挤压数、吸注参数、Eckert数、纳米颗粒形状因子等关键参数对速度、温度、表面摩擦和努塞尔数的影响。通过相似变换将控制偏微分方程转换为常微分方程,并使用Python进行数值求解。结果表明,随着挤压次数、吸注比和Eckert数的增加,温度分布得到改善,表明热输运增强。此外,努塞尔数随着形状因子值的增加而增加,表明传热性能得到改善。该研究为复杂纳米流体组成和动态多孔几何结构的综合效应提供了新的见解,有助于生物医学和工程应用中热系统的优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信