Artificial Intelligence in Liver Pathology: Precision Histology for Accurate Diagnoses

IF 3.2 Q2 GASTROENTEROLOGY & HEPATOLOGY
Parikshit Sanyal , Dipanwita Biswas , Suvradeep Mitra
{"title":"Artificial Intelligence in Liver Pathology: Precision Histology for Accurate Diagnoses","authors":"Parikshit Sanyal ,&nbsp;Dipanwita Biswas ,&nbsp;Suvradeep Mitra","doi":"10.1016/j.jceh.2025.103145","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) is a technique or tool to simulate or emulate human “intelligence.” Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology. These AI-based models aid in the curation of clinical data, reduce the time and expense in decision-making, provide a smooth workflow, and predict the outcomes based on an algorithmic approach. Histopathologists can effectively implement image-based algorithms with the advent of whole-slide imaging and digital pathology generating objective histological data through machine learning and deep learning, branches of AI. Thus, AI-powered models can be implemented in liver histology to reduce the burden of repetitive and tedious tasks, predict various outcomes, reduce inter-observer and intra-observer variability between pathologists, and glean diverse supra-histological predictive data. This review article provides a brief overview of AI in liver pathology and deals with the basic principles of AI, its utility in precision liver histology, and its challenges.</div></div>","PeriodicalId":15479,"journal":{"name":"Journal of Clinical and Experimental Hepatology","volume":"15 6","pages":"Article 103145"},"PeriodicalIF":3.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical and Experimental Hepatology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0973688325006450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is a technique or tool to simulate or emulate human “intelligence.” Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology. These AI-based models aid in the curation of clinical data, reduce the time and expense in decision-making, provide a smooth workflow, and predict the outcomes based on an algorithmic approach. Histopathologists can effectively implement image-based algorithms with the advent of whole-slide imaging and digital pathology generating objective histological data through machine learning and deep learning, branches of AI. Thus, AI-powered models can be implemented in liver histology to reduce the burden of repetitive and tedious tasks, predict various outcomes, reduce inter-observer and intra-observer variability between pathologists, and glean diverse supra-histological predictive data. This review article provides a brief overview of AI in liver pathology and deals with the basic principles of AI, its utility in precision liver histology, and its challenges.
人工智能在肝脏病理学中的应用:精确的组织学诊断
人工智能(AI)是一种模拟或模仿人类“智能”的技术或工具。精确医学或精确组织学是指针对亚人群的疾病诊断、治疗和管理,具有社会文化、行为、基因组、转录组学和药物组学意义。近十年来,基于人工智能的模型在日常生活的各个方面都有了巨大的飞跃,包括精准医学和组织学的实践。这些基于人工智能的模型有助于整理临床数据,减少决策过程中的时间和费用,提供顺畅的工作流程,并基于算法方法预测结果。随着全切片成像和数字病理学的出现,组织病理学家可以有效地实施基于图像的算法,通过机器学习和深度学习(人工智能的分支)生成客观的组织数据。因此,人工智能驱动的模型可以在肝脏组织学中实施,以减轻重复和繁琐的任务负担,预测各种结果,减少病理学家之间观察者之间和观察者内部的差异,并收集各种超组织学预测数据。本文简要介绍了人工智能在肝脏病理学中的应用,并讨论了人工智能的基本原理、人工智能在精确肝脏组织学中的应用以及人工智能面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical and Experimental Hepatology
Journal of Clinical and Experimental Hepatology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
4.90
自引率
16.70%
发文量
537
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信