On generalized Turán number of graphs with bounded matching number

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yisai Xue , Liying Kang
{"title":"On generalized Turán number of graphs with bounded matching number","authors":"Yisai Xue ,&nbsp;Liying Kang","doi":"10.1016/j.dam.2025.08.029","DOIUrl":null,"url":null,"abstract":"<div><div>The generalized Turán number <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow></mrow></math></span> is defined as the maximum number of copies of a graph <span><math><mi>H</mi></math></span> in an <span><math><mi>n</mi></math></span>-vertex graph that does not contain any graph <span><math><mrow><mi>F</mi><mo>∈</mo><mi>F</mi></mrow></math></span>. Alon and Frankl initiated the study of Turán problems with a bounded matching number. In this paper, we establish stability results for generalized Turán problems with bounded matching number. Using the stability results, we provide exact values of <span><math><mrow><mi>ex</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><mrow><mo>{</mo><mi>F</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> for <span><math><mi>F</mi></math></span> being any non-bipartite graph or a path.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 586-597"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004706","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized Turán number ex(n,H,F) is defined as the maximum number of copies of a graph H in an n-vertex graph that does not contain any graph FF. Alon and Frankl initiated the study of Turán problems with a bounded matching number. In this paper, we establish stability results for generalized Turán problems with bounded matching number. Using the stability results, we provide exact values of ex(n,Kr,{F,Ms+1}) for F being any non-bipartite graph or a path.
关于有界匹配数图的广义Turán数
广义Turán数ex(n,H,F)定义为不包含任何图F∈F的n顶点图中图H的最大拷贝数。Alon和Frankl开创了有界匹配数Turán问题的研究。本文建立了一类匹配数有界的广义Turán问题的稳定性结果。利用稳定性结果,我们给出了当F为任意非二部图或路径时ex(n,Kr,{F,Ms+1})的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信