Cerium-Doped NiFe Hydroxides Enabling Hybrid Pathways for Durable Alkaline Water Oxidation under Fluctuating Power

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-28 DOI:10.1021/acsnano.5c12459
Suwen Wang, Binbin Lin, Menghui Qi, Jiadong Chen, Xiangbowen Du, Shanjun Mao* and Yong Wang*, 
{"title":"Cerium-Doped NiFe Hydroxides Enabling Hybrid Pathways for Durable Alkaline Water Oxidation under Fluctuating Power","authors":"Suwen Wang,&nbsp;Binbin Lin,&nbsp;Menghui Qi,&nbsp;Jiadong Chen,&nbsp;Xiangbowen Du,&nbsp;Shanjun Mao* and Yong Wang*,&nbsp;","doi":"10.1021/acsnano.5c12459","DOIUrl":null,"url":null,"abstract":"<p >In this work, we present a cerium-substituted NiFe-layered double hydroxide (NiFe-Ce LDH) that synergistically activates both the adsorbate evolution mechanism (AEM) and a localized lattice-oxygen mechanism (LOM) for efficient alkaline water oxidation. Atomic Ce incorporation induces charge redistribution through Ce <i>4f</i>–O <i>2p</i> interactions, stabilizing Fe sites and upshifting the O<i>2p</i> band to enable controlled lattice-oxygen redox without structural collapse. In situ ATR-SEIRAS and DEMS measurements confirm the simultaneous formation of *OOH and OO* intermediates, indicating the hybrid pathway. The optimized NiFe-Ce LDH achieves an overpotential of 220 mV at 10 mA cm<sup>–</sup><sup>2</sup> and sustains 500 mA cm<sup>–</sup><sup>2</sup> operation for 650 h. In a membrane-electrode assembly electrolyzer, it delivers 20 A for over 800 h with only a 0.1 V increase after 850 h. Under simulated wind-power voltage fluctuations (1.45–2.25 V), the catalyst maintains stable performance and demonstrates potential for sustainable hydrogen production in dynamic energy environments.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 35","pages":"31915–31928"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c12459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a cerium-substituted NiFe-layered double hydroxide (NiFe-Ce LDH) that synergistically activates both the adsorbate evolution mechanism (AEM) and a localized lattice-oxygen mechanism (LOM) for efficient alkaline water oxidation. Atomic Ce incorporation induces charge redistribution through Ce 4f–O 2p interactions, stabilizing Fe sites and upshifting the O2p band to enable controlled lattice-oxygen redox without structural collapse. In situ ATR-SEIRAS and DEMS measurements confirm the simultaneous formation of *OOH and OO* intermediates, indicating the hybrid pathway. The optimized NiFe-Ce LDH achieves an overpotential of 220 mV at 10 mA cm2 and sustains 500 mA cm2 operation for 650 h. In a membrane-electrode assembly electrolyzer, it delivers 20 A for over 800 h with only a 0.1 V increase after 850 h. Under simulated wind-power voltage fluctuations (1.45–2.25 V), the catalyst maintains stable performance and demonstrates potential for sustainable hydrogen production in dynamic energy environments.

Abstract Image

Abstract Image

在波动功率下实现持久碱性水氧化的铈掺杂NiFe氢氧化物杂化途径
在这项工作中,我们提出了一种铈取代的nife层状双氢氧化物(NiFe-Ce LDH),它可以协同激活吸附质演化机制(AEM)和局部晶格-氧机制(LOM),从而实现高效的碱性水氧化。原子Ce的掺入通过ce4f - O2p相互作用诱导电荷重新分配,稳定Fe位并提升O2p带,从而实现可控的晶格-氧氧化还原而不会导致结构崩溃。原位ATR-SEIRAS和dem测量证实了*OOH和OO*中间体的同时形成,表明了杂交途径。优化后的nfe - ce LDH在10 mA cm-2时的过电位为220 mV,并能维持500 mA cm-2运行650小时。在膜电极组装电解槽中,它能在800小时内提供20 a的过电位,850小时后仅增加0.1 V。在模拟风电电压波动(1.45-2.25 V)下,催化剂保持稳定的性能,并显示出在动态能源环境下可持续制氢的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信