{"title":"Organic-inorganic covalent selenium reversing ischemic reperfusion injury","authors":"Zushuang Xiong, Guanning Huang, Jia-Run Huang, Ying Liu, Lizhen He, Tianfeng Chen","doi":"10.1038/s41467-025-62986-2","DOIUrl":null,"url":null,"abstract":"<p>Clear elucidation of the connection between chemical structure and biological action mechanisms is the key issue preventing the successful development of nanomedicines. Herein, employing essential trace element selenium (Se) as an example, we fabricate organic-inorganic covalent Se hybrid by anchoring Se atom to polyethylene glycol chain during carbonization to form organic Se-C and inorganic Se-Se bonds in one system to integrate the advantages of both species. The weak covalent Se-Se bond breaks down in response to redox stimuli, thus releases organic Se with stronger electron transfer ability to scavenge free radicals, and forms highly active inorganic Se, which further releases free Se atom to trigger selenoprotein synthesis and activation, ultimately reverses reperfusion injury in male-mice ischemic stroke, and improves neurological restoration. This work provides a unique Se atom reprogramming strategy to design highly bioactive hybrid Se species with clear chemical nature and action mechanisms.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"47 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-62986-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Clear elucidation of the connection between chemical structure and biological action mechanisms is the key issue preventing the successful development of nanomedicines. Herein, employing essential trace element selenium (Se) as an example, we fabricate organic-inorganic covalent Se hybrid by anchoring Se atom to polyethylene glycol chain during carbonization to form organic Se-C and inorganic Se-Se bonds in one system to integrate the advantages of both species. The weak covalent Se-Se bond breaks down in response to redox stimuli, thus releases organic Se with stronger electron transfer ability to scavenge free radicals, and forms highly active inorganic Se, which further releases free Se atom to trigger selenoprotein synthesis and activation, ultimately reverses reperfusion injury in male-mice ischemic stroke, and improves neurological restoration. This work provides a unique Se atom reprogramming strategy to design highly bioactive hybrid Se species with clear chemical nature and action mechanisms.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.