Breaking the Conductivity‐Capacity Trade‐Off in MCl6 Anionic Framework: Amorphous Oxyhalide Cathode Materials Enable ≈1100 Wh Kg−1 at Cathode‐Level in All‐Solid‐State Lithium Batteries

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhao Duan, Fiaz Hussain, Houyi Liu, Jiuwei Lei, Wei Xia, Hongzhang Zhang, Xiaofei Yang, Xianfeng Li
{"title":"Breaking the Conductivity‐Capacity Trade‐Off in MCl6 Anionic Framework: Amorphous Oxyhalide Cathode Materials Enable ≈1100 Wh Kg−1 at Cathode‐Level in All‐Solid‐State Lithium Batteries","authors":"Yuhao Duan, Fiaz Hussain, Houyi Liu, Jiuwei Lei, Wei Xia, Hongzhang Zhang, Xiaofei Yang, Xianfeng Li","doi":"10.1002/adma.202513544","DOIUrl":null,"url":null,"abstract":"Halide cathode active materials (CAMs) with high ionic conductivities have attracted significant attention. However, their capacity and energy density are limited by the large molar weight of the Li⁺ transport‐dependent MCl<jats:sub>6</jats:sub> anionic framework. In this study, a low‐cost amorphous iron‐based oxyhalide LFFOC‐0.5 CAM is introduced that overcomes the conductivity‐capacity trade‐off between high ionic conductivity and low discharge capacity associated with the MCl<jats:sub>6</jats:sub> framework. LFFOC‐0.5 CAM achieves dual breakthroughs, exhibiting an impressive ionic conductivity of 0.26 mS cm<jats:sup>−1</jats:sup> at 25 °C, and a high specific capacity of 586 mAh g<jats:sup>−1</jats:sup> via an intercalation‐conversion reaction at 60 °C. Due to its superior ionic conductivity and capacity, LFFOC‐0.5 CAM enables a catholyte‐free electrode to achieve an exceptional energy density of ≈1100 Wh kg<jats:sup>−1</jats:sup><jats:sub>cathode</jats:sub> and a power density of 2185 W kg<jats:sup>−1</jats:sup><jats:sub>cathode</jats:sub> at 60 °C, surpassing reported halide‐ and oxide‐based CAMs by 1.5 to 3 times. Additionally, LFFOC‐0.5 CAM is highly cost‐effective ($9.3 kg<jats:sup>−1</jats:sup>) and exhibits remarkable humidity stability, retaining 100% of its capacity after 12 h of exposure to 5 ± 1% humidity. The multifunctional iron‐based oxyhalide CAMs open new avenues for advancing high‐performance all‐solid‐state lithium batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"22 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202513544","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halide cathode active materials (CAMs) with high ionic conductivities have attracted significant attention. However, their capacity and energy density are limited by the large molar weight of the Li⁺ transport‐dependent MCl6 anionic framework. In this study, a low‐cost amorphous iron‐based oxyhalide LFFOC‐0.5 CAM is introduced that overcomes the conductivity‐capacity trade‐off between high ionic conductivity and low discharge capacity associated with the MCl6 framework. LFFOC‐0.5 CAM achieves dual breakthroughs, exhibiting an impressive ionic conductivity of 0.26 mS cm−1 at 25 °C, and a high specific capacity of 586 mAh g−1 via an intercalation‐conversion reaction at 60 °C. Due to its superior ionic conductivity and capacity, LFFOC‐0.5 CAM enables a catholyte‐free electrode to achieve an exceptional energy density of ≈1100 Wh kg−1cathode and a power density of 2185 W kg−1cathode at 60 °C, surpassing reported halide‐ and oxide‐based CAMs by 1.5 to 3 times. Additionally, LFFOC‐0.5 CAM is highly cost‐effective ($9.3 kg−1) and exhibits remarkable humidity stability, retaining 100% of its capacity after 12 h of exposure to 5 ± 1% humidity. The multifunctional iron‐based oxyhalide CAMs open new avenues for advancing high‐performance all‐solid‐state lithium batteries.
打破MCl6阴离子框架中电导率与容量的权衡:无定形氧化卤化物正极材料在全固态锂电池的阴极水平上使≈1100 Wh Kg−1
具有高离子电导率的卤化物阴极活性材料(CAMs)引起了人们的广泛关注。然而,它们的容量和能量密度受到Li⁺依赖于传输的MCl6阴离子框架的大摩尔质量的限制。在这项研究中,引入了一种低成本的无定形铁基氧卤化物LFFOC‐0.5 CAM,克服了与MCl6框架相关的高离子电导率和低放电容量之间的电导率-容量权衡。LFFOC‐0.5 CAM实现了双重突破,在25°C下表现出令人印象深刻的0.26 mS cm−1离子电导率,在60°C下通过插层转化反应表现出586 mAh g−1的高比容量。由于其优异的离子电导率和容量,LFFOC‐0.5 CAM使无阴极电极能够在60°C下获得≈1100 Wh kg−1阴极的特殊能量密度和2185 W kg−1阴极的功率密度,比现有的卤化物和氧化物基CAM高出1.5至3倍。此外,LFFOC‐0.5 CAM具有很高的成本效益(9.3 kg−1美元),并且具有显著的湿度稳定性,在5±1%的湿度下暴露12小时后仍能保持100%的容量。多功能铁基氧化卤化物cam为高性能全固态锂电池的发展开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信