Jia-Yong Zhang, Ji-Jun Chen, Boming Shen, Jia-Heng Fang, Xuan-Yi Du, Ning-Yuan Yang, Chang-Jiang Yang, Wei-Long Liu, Fu Liu, Zhong-Liang Li, Qiang-Shuai Gu, Zhe Dong, Peiyuan Yu, Xin-Yuan Liu
{"title":"Copper-catalysed enantioconvergent O-alkylation of alcohols with racemic α-tertiary haloamides to access enantioenriched hindered dialkyl ethers","authors":"Jia-Yong Zhang, Ji-Jun Chen, Boming Shen, Jia-Heng Fang, Xuan-Yi Du, Ning-Yuan Yang, Chang-Jiang Yang, Wei-Long Liu, Fu Liu, Zhong-Liang Li, Qiang-Shuai Gu, Zhe Dong, Peiyuan Yu, Xin-Yuan Liu","doi":"10.1038/s41929-025-01402-w","DOIUrl":null,"url":null,"abstract":"The cross-coupling of bulky electrophiles and nucleophiles to form sterically congested molecules is a challenging issue in modern synthetic chemistry. Among them, chiral hindered dialkyl ethers are one class of valuable motifs, but the catalytic asymmetric synthesis of such motifs from readily available tertiary alcohols and racemic electrophiles remains underexplored. Challenges arise from the steric hindrance of both reactants, the difficulty in enantiodiscriminating the three substituents of tertiary electrophiles and the low nucleophilicity of bulky alcohols. Here we show the copper-catalysed enantioconvergent radical O-alkylation of diverse alcohols with racemic α-tertiary haloamides to access enantioenriched hindered dialkyl ethers. Successful realization of this strategy relies on the development of anionic N,N,N-ligands with a side arm to form coordinatively saturated key Cu(iii) intermediates, therefore exerting remarkable chemo- and enantioselectivity. The synthetic potential is showcased by the late-stage functionalization and stereodivergent synthesis of four stereoisomers of a product with two stereocentres. The O-alkylation of tertiary alcohols with racemic tertiary electrophiles to access chiral hindered dialkyl ethers has remained elusive. Now this synthetic challenge has been accomplished by copper-catalysed C–O cross-coupling between tertiary haloamides and alcohols using designed ligands.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 9","pages":"919-930"},"PeriodicalIF":44.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-025-01402-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cross-coupling of bulky electrophiles and nucleophiles to form sterically congested molecules is a challenging issue in modern synthetic chemistry. Among them, chiral hindered dialkyl ethers are one class of valuable motifs, but the catalytic asymmetric synthesis of such motifs from readily available tertiary alcohols and racemic electrophiles remains underexplored. Challenges arise from the steric hindrance of both reactants, the difficulty in enantiodiscriminating the three substituents of tertiary electrophiles and the low nucleophilicity of bulky alcohols. Here we show the copper-catalysed enantioconvergent radical O-alkylation of diverse alcohols with racemic α-tertiary haloamides to access enantioenriched hindered dialkyl ethers. Successful realization of this strategy relies on the development of anionic N,N,N-ligands with a side arm to form coordinatively saturated key Cu(iii) intermediates, therefore exerting remarkable chemo- and enantioselectivity. The synthetic potential is showcased by the late-stage functionalization and stereodivergent synthesis of four stereoisomers of a product with two stereocentres. The O-alkylation of tertiary alcohols with racemic tertiary electrophiles to access chiral hindered dialkyl ethers has remained elusive. Now this synthetic challenge has been accomplished by copper-catalysed C–O cross-coupling between tertiary haloamides and alcohols using designed ligands.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.