Al2O3/MgO‐doped, CaO‐based adsorbents for CO2 capture: A performance study

IF 4.8 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chengzhuang Zhang, Jia Fang, Xilong Xu, Meng Zhang, Zhiqiang Han, Jianxiong Liao
{"title":"Al2O3/MgO‐doped, CaO‐based adsorbents for CO2 capture: A performance study","authors":"Chengzhuang Zhang, Jia Fang, Xilong Xu, Meng Zhang, Zhiqiang Han, Jianxiong Liao","doi":"10.1111/nyas.70026","DOIUrl":null,"url":null,"abstract":"We investigated direct calcination of four precursors: calcium oxalate (CaC<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>; denoted as CaO‐1), calcium carbonate (CaCO<jats:sub>3</jats:sub>; CaO‐2), calcium <jats:sc>d</jats:sc>‐gluconate monohydrate (C<jats:sub>12</jats:sub>H<jats:sub>22</jats:sub>CaO<jats:sub>14</jats:sub>·H<jats:sub>2</jats:sub>O; CaO‐3), and a commercial calcium carbonate (CaO‐4). The effects of precursor selection on CO<jats:sub>2</jats:sub> adsorption performance were systematically compared. CaO‐1 exhibited superior initial CO<jats:sub>2</jats:sub> adsorption capacity (0.63 g/g) due to hierarchical porosity, but suffered a 38% capacity loss after 10 cycles from sintering. Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> doping (CaO–Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, 95/5) enhanced capacity and kinetics (0.65 g/g and 0.23 g/g·min<jats:sup>−1</jats:sup>, respectively), showing 3% and 43.75% improvements over CaO‐1, respectively, though a degradation of 33.8% occurred after 20 cycles. MgO doping (CaO–MgO, 85/15) achieved exceptional cyclic stability, retaining 93% capacity over 10 cycles (55% improvement vs. CaO‐1) via inherent sintering resistance. Characterization experiments confirmed their structural evolution: Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> stabilized pore networks, while MgO preserved framework integrity. The results demonstrate that precursor engineering and dopant selection critically influence adsorption kinetics versus cyclic stability trade‐offs. Optimal CaO–Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> (95/5) and CaO–MgO (85/15) compositions propose a kinetics–stability decoupling strategy. This dual‐dopant approach addresses calcium looping challenges by balancing rapid CO<jats:sub>2</jats:sub> capture with structural durability, providing insights for cost‐effective adsorbent optimization.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"38 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.70026","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated direct calcination of four precursors: calcium oxalate (CaC2O4; denoted as CaO‐1), calcium carbonate (CaCO3; CaO‐2), calcium d‐gluconate monohydrate (C12H22CaO14·H2O; CaO‐3), and a commercial calcium carbonate (CaO‐4). The effects of precursor selection on CO2 adsorption performance were systematically compared. CaO‐1 exhibited superior initial CO2 adsorption capacity (0.63 g/g) due to hierarchical porosity, but suffered a 38% capacity loss after 10 cycles from sintering. Al2O3 doping (CaO–Al2O3, 95/5) enhanced capacity and kinetics (0.65 g/g and 0.23 g/g·min−1, respectively), showing 3% and 43.75% improvements over CaO‐1, respectively, though a degradation of 33.8% occurred after 20 cycles. MgO doping (CaO–MgO, 85/15) achieved exceptional cyclic stability, retaining 93% capacity over 10 cycles (55% improvement vs. CaO‐1) via inherent sintering resistance. Characterization experiments confirmed their structural evolution: Al2O3 stabilized pore networks, while MgO preserved framework integrity. The results demonstrate that precursor engineering and dopant selection critically influence adsorption kinetics versus cyclic stability trade‐offs. Optimal CaO–Al2O3 (95/5) and CaO–MgO (85/15) compositions propose a kinetics–stability decoupling strategy. This dual‐dopant approach addresses calcium looping challenges by balancing rapid CO2 capture with structural durability, providing insights for cost‐effective adsorbent optimization.
Al2O3/MgO掺杂,CaO基吸附剂捕集CO2:性能研究
我们研究了四种前驱体的直接煅烧:草酸钙(CaC2O4;记为CaO‐1)、碳酸钙(CaCO3; CaO‐2)、d‐葡萄糖酸一水钙(C12H22CaO14·H2O; CaO‐3)和商用碳酸钙(CaO‐4)。系统比较了前驱体选择对CO2吸附性能的影响。由于分层孔隙,CaO‐1表现出优异的初始CO2吸附能力(0.63 g/g),但在烧结10次循环后,其吸附能力损失了38%。Al2O3掺杂(CaO - Al2O3, 95/5)提高了电池的容量和动力学(分别为0.65 g/g和0.23 g/g·min - 1),比CaO‐1分别提高了3%和43.75%,尽管在20次循环后降解了33.8%。MgO掺杂(CaO - MgO, 85/15)具有优异的循环稳定性,通过固有的烧结阻力,在10个循环中保持93%的容量(比CaO - 1提高55%)。表征实验证实了它们的结构演化:Al2O3稳定了孔隙网络,而MgO保持了框架的完整性。结果表明,前驱体工程和掺杂剂的选择对吸附动力学和循环稳定性的权衡有重要影响。最佳CaO-Al2O3(95/5)和CaO-MgO(85/15)组合提出了动力学稳定性解耦策略。这种双掺杂方法通过平衡二氧化碳的快速捕获和结构耐久性来解决钙环的挑战,为具有成本效益的吸附剂优化提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信