{"title":"Optical generative models","authors":"Shiqi Chen, Yuhang Li, Yuntian Wang, Hanlong Chen, Aydogan Ozcan","doi":"10.1038/s41586-025-09446-5","DOIUrl":null,"url":null,"abstract":"Generative models cover various application areas, including image and video synthesis, natural language processing and molecular design, among many others1–11. As digital generative models become larger, scalable inference in a fast and energy-efficient manner becomes a challenge12–14. Here we present optical generative models inspired by diffusion models4, where a shallow and fast digital encoder first maps random noise into phase patterns that serve as optical generative seeds for a desired data distribution; a jointly trained free-space-based reconfigurable decoder all-optically processes these generative seeds to create images never seen before following the target data distribution. Except for the illumination power and the random seed generation through a shallow encoder, these optical generative models do not consume computing power during the synthesis of the images. We report the optical generation of monochrome and multicolour images of handwritten digits, fashion products, butterflies, human faces and artworks, following the data distributions of MNIST15, Fashion-MNIST16, Butterflies-10017, Celeb-A datasets18, and Van Gogh’s paintings and drawings19, respectively, achieving an overall performance comparable to digital neural-network-based generative models. To experimentally demonstrate optical generative models, we used visible light to generate images of handwritten digits and fashion products. In addition, we generated Van Gogh-style artworks using both monochrome and multiwavelength illumination. These optical generative models might pave the way for energy-efficient and scalable inference tasks, further exploiting the potentials of optics and photonics for artificial-intelligence-generated content. Optical generative models are demonstrated for the rapid and power-efficient creation of never-seen-before images of handwritten digits, fashion products, butterflies, human faces and Van Gogh-style artworks.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"644 8078","pages":"903-911"},"PeriodicalIF":48.5000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41586-025-09446-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-025-09446-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Generative models cover various application areas, including image and video synthesis, natural language processing and molecular design, among many others1–11. As digital generative models become larger, scalable inference in a fast and energy-efficient manner becomes a challenge12–14. Here we present optical generative models inspired by diffusion models4, where a shallow and fast digital encoder first maps random noise into phase patterns that serve as optical generative seeds for a desired data distribution; a jointly trained free-space-based reconfigurable decoder all-optically processes these generative seeds to create images never seen before following the target data distribution. Except for the illumination power and the random seed generation through a shallow encoder, these optical generative models do not consume computing power during the synthesis of the images. We report the optical generation of monochrome and multicolour images of handwritten digits, fashion products, butterflies, human faces and artworks, following the data distributions of MNIST15, Fashion-MNIST16, Butterflies-10017, Celeb-A datasets18, and Van Gogh’s paintings and drawings19, respectively, achieving an overall performance comparable to digital neural-network-based generative models. To experimentally demonstrate optical generative models, we used visible light to generate images of handwritten digits and fashion products. In addition, we generated Van Gogh-style artworks using both monochrome and multiwavelength illumination. These optical generative models might pave the way for energy-efficient and scalable inference tasks, further exploiting the potentials of optics and photonics for artificial-intelligence-generated content. Optical generative models are demonstrated for the rapid and power-efficient creation of never-seen-before images of handwritten digits, fashion products, butterflies, human faces and Van Gogh-style artworks.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.