Impact of the Si Electrode Morphology and of the Added Li-Salt on the SEI Formed Using EMIFSI-Based Ionic-Liquid Electrolytes

IF 6.1 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Nicholas Carboni, Sergio Brutti, Oriele Palumbo, Giovanni Battista Appetecchi, Giovanna Maresca, Hugh Geaney, Kevin M. Ryan, Abinaya Sankaran, Michela Ottaviani, Francesco Capitani, Sebastien Fantini, Rongying Lin, Pierre-Alexandre Martin, Mark van del Velden, Annalisa Paolone
{"title":"Impact of the Si Electrode Morphology and of the Added Li-Salt on the SEI Formed Using EMIFSI-Based Ionic-Liquid Electrolytes","authors":"Nicholas Carboni,&nbsp;Sergio Brutti,&nbsp;Oriele Palumbo,&nbsp;Giovanni Battista Appetecchi,&nbsp;Giovanna Maresca,&nbsp;Hugh Geaney,&nbsp;Kevin M. Ryan,&nbsp;Abinaya Sankaran,&nbsp;Michela Ottaviani,&nbsp;Francesco Capitani,&nbsp;Sebastien Fantini,&nbsp;Rongying Lin,&nbsp;Pierre-Alexandre Martin,&nbsp;Mark van del Velden,&nbsp;Annalisa Paolone","doi":"10.1002/adsu.202400829","DOIUrl":null,"url":null,"abstract":"<p>This work presents an in-depth chemical and morphological investigation of the solid electrolyte interphase (SEI) formed on binder-free silicon electrodes, which include both nanowire (Si-NW) and amorphous (a-Si) configurations, for next-generation lithium-ion battery systems. The study focuses on the first five galvanostatic cycles to capture the critical early-stage SEI consolidation process, essential for understanding the interfacial phenomena that dictate long-term performance. By employing innovative electrode fabrication techniques such as plasma-enhanced chemical vapor deposition and utilizing ionic liquid (IL)-based electrolytes—specifically 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) formulations known for their low viscosity and high conductivity—this work addresses the challenges posed by the significant volume changes inherent to Si-based materials. Advanced characterization methodologies, notably Optical-Photothermal Infrared Spectroscopy (O-PTIR) and Raman spectroscopy are utilized to probe the chemical and structural evolution of the SEI with high spatial resolution. This multifaceted approach reveals the interplay between electrode morphology and electrolyte composition on SEI formation and provides valuable insights into the fundamental processes governing irreversible capacity losses and electrode degradation. The findings demonstrate clear material- and electrolyte-dependent differences in SEI characteristics, thereby establishing new avenues for optimizing interfacial stability and battery performance. Overall, the study contributes innovative perspectives on early SEI formation mechanisms critical for the design of safer and more durable high-capacity battery electrodes.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"9 8","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400829","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adsu.202400829","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an in-depth chemical and morphological investigation of the solid electrolyte interphase (SEI) formed on binder-free silicon electrodes, which include both nanowire (Si-NW) and amorphous (a-Si) configurations, for next-generation lithium-ion battery systems. The study focuses on the first five galvanostatic cycles to capture the critical early-stage SEI consolidation process, essential for understanding the interfacial phenomena that dictate long-term performance. By employing innovative electrode fabrication techniques such as plasma-enhanced chemical vapor deposition and utilizing ionic liquid (IL)-based electrolytes—specifically 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI) formulations known for their low viscosity and high conductivity—this work addresses the challenges posed by the significant volume changes inherent to Si-based materials. Advanced characterization methodologies, notably Optical-Photothermal Infrared Spectroscopy (O-PTIR) and Raman spectroscopy are utilized to probe the chemical and structural evolution of the SEI with high spatial resolution. This multifaceted approach reveals the interplay between electrode morphology and electrolyte composition on SEI formation and provides valuable insights into the fundamental processes governing irreversible capacity losses and electrode degradation. The findings demonstrate clear material- and electrolyte-dependent differences in SEI characteristics, thereby establishing new avenues for optimizing interfacial stability and battery performance. Overall, the study contributes innovative perspectives on early SEI formation mechanisms critical for the design of safer and more durable high-capacity battery electrodes.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Si电极形态和添加的li -盐对emifsi基离子液体电解质形成SEI的影响
本研究对用于下一代锂离子电池系统的无粘结剂硅电极(包括纳米线(Si-NW)和非晶(a-Si)结构)上形成的固体电解质界面(SEI)进行了深入的化学和形态学研究。该研究的重点是前五个恒流循环,以捕捉关键的早期SEI巩固过程,这对于理解决定长期性能的界面现象至关重要。通过采用创新的电极制造技术,如等离子体增强化学气相沉积和利用离子液体(IL)基电解质-特别是1-乙基-3-甲基咪唑双(氟磺酰基)亚胺(EMIFSI)配方,以其低粘度和高导电性而著称-这项工作解决了硅基材料固有的显着体积变化所带来的挑战。利用先进的表征方法,特别是光学-光热红外光谱(O-PTIR)和拉曼光谱,以高空间分辨率探测SEI的化学和结构演变。这种多方面的方法揭示了电极形态和电解质成分对SEI形成的相互作用,并为控制不可逆容量损失和电极降解的基本过程提供了有价值的见解。研究结果表明,材料和电解质在SEI特性上存在明显的差异,从而为优化界面稳定性和电池性能建立了新的途径。总体而言,该研究为早期SEI形成机制提供了创新视角,这对于设计更安全、更耐用的高容量电池电极至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信