{"title":"Mitochondrial Dysfunction in Neurodegenerative Diseases","authors":"Chongyang Chen, Yujie Zhao, Jing Wang, Donghui Pan, Xinyu Wang, Yuping Xu, Junjie Yan, Lizhen Wang, Xifei Yang, Ming Lu, Gong-Ping Liu","doi":"10.1002/mco2.70326","DOIUrl":null,"url":null,"abstract":"<p>Mitochondria are indispensable for the normal physiological activities and metabolism of living organisms. The proper function of mitochondria in the brain is crucial for maintaining the normal brain function with high energy demands. There are growing evidences that mitochondrial dysfunction plays a critical role in multiple of neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. In this review, the research progress and future development trajectory of mitochondrial function in NDDs will be comprehensively summarized, which focusing on mitochondrial physiological function, the mechanisms underlying mitochondrial dysfunction in diverse NDDs, research approaches for exploring mitochondrial function, various strategies for targeted mitochondrial therapy, and the challenges and opportunities encountered in the evaluation of mitochondrial-targeted therapeutic drugs. The feasibility of in vivo mitochondrial imaging and the future perspectives of AI for mitochondria-targeted drug screening are deliberated, which will facilitate the advancement of the comprehension of mitochondrial functional mechanisms in NDDs and the development of future clinical therapeutic drugs. This review shall furnish several insights regarding novel research methodologies and drug developments for researchers engaged in the investigation of mitochondrial dysfunction in NDDs.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 9","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70326","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are indispensable for the normal physiological activities and metabolism of living organisms. The proper function of mitochondria in the brain is crucial for maintaining the normal brain function with high energy demands. There are growing evidences that mitochondrial dysfunction plays a critical role in multiple of neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. In this review, the research progress and future development trajectory of mitochondrial function in NDDs will be comprehensively summarized, which focusing on mitochondrial physiological function, the mechanisms underlying mitochondrial dysfunction in diverse NDDs, research approaches for exploring mitochondrial function, various strategies for targeted mitochondrial therapy, and the challenges and opportunities encountered in the evaluation of mitochondrial-targeted therapeutic drugs. The feasibility of in vivo mitochondrial imaging and the future perspectives of AI for mitochondria-targeted drug screening are deliberated, which will facilitate the advancement of the comprehension of mitochondrial functional mechanisms in NDDs and the development of future clinical therapeutic drugs. This review shall furnish several insights regarding novel research methodologies and drug developments for researchers engaged in the investigation of mitochondrial dysfunction in NDDs.