Thermal Stability and Mechanical Properties of Nanotwinned Ni–W Alloyed Films

IF 3.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Shuyi Ren, Jiao Li, Kai Wu, Xiaoge Li, Yaqiang Wang, Jinyu Zhang, Gang Liu, Jun Sun
{"title":"Thermal Stability and Mechanical Properties of Nanotwinned Ni–W Alloyed Films","authors":"Shuyi Ren,&nbsp;Jiao Li,&nbsp;Kai Wu,&nbsp;Xiaoge Li,&nbsp;Yaqiang Wang,&nbsp;Jinyu Zhang,&nbsp;Gang Liu,&nbsp;Jun Sun","doi":"10.1007/s40195-025-01880-8","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocrystalline alloys often exhibit unusual thermal stability as a consequence of kinetic and thermodynamic barriers to grain growth. However, the physical mechanisms governing alloy stability need to be identified. In this work, we found that grain boundary (GB) relaxation renders Ni–W alloyed films relatively stable at low annealing temperature, while twinning-mediated grain growth occurs via dislocation-GB/twin boundary (TB) interactions as the annealing temperature increases. At a relatively low temperature, TB strengthening plays a dominant role in plastic deformation, whereas precipitation strengthening gradually controls the deformation mechanism with the increase of annealing temperature. Our findings provide evidence for improving mechanical property through alloying and microstructure design, and have a crucial guiding significance in material selection and miniaturized applications such as Micro Electro Mechanical Systems.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 9","pages":"1570 - 1582"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-025-01880-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Nanocrystalline alloys often exhibit unusual thermal stability as a consequence of kinetic and thermodynamic barriers to grain growth. However, the physical mechanisms governing alloy stability need to be identified. In this work, we found that grain boundary (GB) relaxation renders Ni–W alloyed films relatively stable at low annealing temperature, while twinning-mediated grain growth occurs via dislocation-GB/twin boundary (TB) interactions as the annealing temperature increases. At a relatively low temperature, TB strengthening plays a dominant role in plastic deformation, whereas precipitation strengthening gradually controls the deformation mechanism with the increase of annealing temperature. Our findings provide evidence for improving mechanical property through alloying and microstructure design, and have a crucial guiding significance in material selection and miniaturized applications such as Micro Electro Mechanical Systems.

纳米双晶Ni-W合金薄膜的热稳定性和力学性能
由于晶粒生长的动力学和热力学障碍,纳米晶合金通常表现出不同寻常的热稳定性。然而,控制合金稳定性的物理机制需要确定。在这项工作中,我们发现晶界(GB)弛豫使Ni-W合金薄膜在低退火温度下相对稳定,而随着退火温度的升高,孪晶介导的晶粒生长通过位错-GB/孪晶界(TB)相互作用发生。在较低温度下,TB强化在塑性变形中起主导作用,而随着退火温度的升高,析出强化逐渐控制变形机制。研究结果为通过合金化和微观结构设计来改善材料的力学性能提供了依据,对材料选择和微型化应用(如微电子机械系统)具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信