Chunli Ai, Zeyu Jiang, Fan Dang, Chi Ma, Dong Guo, Yuying Shao, Jialei Wan, Chi He
{"title":"Advances for in situ characterization techniques applied to gas-solid heterogeneous catalysis under reaction conditions","authors":"Chunli Ai, Zeyu Jiang, Fan Dang, Chi Ma, Dong Guo, Yuying Shao, Jialei Wan, Chi He","doi":"10.1007/s11705-025-2602-x","DOIUrl":null,"url":null,"abstract":"<div><p>Heterogeneous catalysis is fundamental to chemical processes, with gas-solid catalysis extensively employed in chemical production, energy conversion, and environmental protection. Attaining high efficiency in these processes necessitates catalysts exhibiting exceptional activity, selectivity, and stability, frequently accomplished using nanostructured metal catalysts. The continuous growth of active sites in heterogeneous metal catalysts presents a considerable obstacle for the precise identification of the genuine active sites. The emergence of <i>in situ</i> and operando characterization techniques has clarified the knowledge of dynamic alterations in active sites, offering substantial scientific information to underpin the rational design of catalysts. This review summarizes recent progress in the development of diverse situ/operando approaches for identifying active regions in catalytic conversion over heterogeneous catalysts. We comprehensively outline the applicability of diverse optical and X-ray spectroscopic techniques, including transmission electron microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, in identifying active sites and elucidating reaction processes in heterogeneous catalysis. The discussion encompasses issues and future views on the identification of active sites evolution during the reaction process, as well as the advancement of <i>in situ</i> and operando characterization approaches.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2602-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous catalysis is fundamental to chemical processes, with gas-solid catalysis extensively employed in chemical production, energy conversion, and environmental protection. Attaining high efficiency in these processes necessitates catalysts exhibiting exceptional activity, selectivity, and stability, frequently accomplished using nanostructured metal catalysts. The continuous growth of active sites in heterogeneous metal catalysts presents a considerable obstacle for the precise identification of the genuine active sites. The emergence of in situ and operando characterization techniques has clarified the knowledge of dynamic alterations in active sites, offering substantial scientific information to underpin the rational design of catalysts. This review summarizes recent progress in the development of diverse situ/operando approaches for identifying active regions in catalytic conversion over heterogeneous catalysts. We comprehensively outline the applicability of diverse optical and X-ray spectroscopic techniques, including transmission electron microscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, in identifying active sites and elucidating reaction processes in heterogeneous catalysis. The discussion encompasses issues and future views on the identification of active sites evolution during the reaction process, as well as the advancement of in situ and operando characterization approaches.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.