Fei Jiang, Jiaye Li, Yingying Liu, Kun Hu, Yan Lin, Chao Feng, Yuan Pan
{"title":"Long-range electron-rich optimization of Cl doped LaCoO3 catalyst for efficient electrocatalytic water oxidation","authors":"Fei Jiang, Jiaye Li, Yingying Liu, Kun Hu, Yan Lin, Chao Feng, Yuan Pan","doi":"10.1007/s11705-025-2603-9","DOIUrl":null,"url":null,"abstract":"<div><p>Doped perovskite oxides are efficient electrocatalysts for water oxidation; however, the mechanism of O-site doping remains unclear. This study proposes a long-range electron-rich optimization mechanism for Cl doped LaCoO<sub>3</sub>, involving the formation of ultra-long Co–Cl bonds as a result of lattice distortion induced by Cl doping at the O site. This catalyst exhibited excellent oxygen evolution reaction activity and stability. Theoretical calculations revealed that the ultra-long Co–Cl bond enables an electron-rich state at the Co sites, weakening the Co–O lattice bonding and facilitating the conversion of lattice O into bulk-phase O species, thus enhancing the performance of oxygen evolution reaction. This study introduces a novel regulatory mechanism for doped perovskite oxide catalysts to enhance water oxidation.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 9","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2603-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Doped perovskite oxides are efficient electrocatalysts for water oxidation; however, the mechanism of O-site doping remains unclear. This study proposes a long-range electron-rich optimization mechanism for Cl doped LaCoO3, involving the formation of ultra-long Co–Cl bonds as a result of lattice distortion induced by Cl doping at the O site. This catalyst exhibited excellent oxygen evolution reaction activity and stability. Theoretical calculations revealed that the ultra-long Co–Cl bond enables an electron-rich state at the Co sites, weakening the Co–O lattice bonding and facilitating the conversion of lattice O into bulk-phase O species, thus enhancing the performance of oxygen evolution reaction. This study introduces a novel regulatory mechanism for doped perovskite oxide catalysts to enhance water oxidation.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.