Kai Yang, Hongfu Zhang, Jinjun Zhou, Qiwen Ying, Shenghua Zhou, Yishan Cheng, Xiping Wei, Xiaoyan Gu, Qunke Xia and Jia Liu
{"title":"High-precision Fe isotope analysis for low contents using a Nu Sapphire instrument†","authors":"Kai Yang, Hongfu Zhang, Jinjun Zhou, Qiwen Ying, Shenghua Zhou, Yishan Cheng, Xiping Wei, Xiaoyan Gu, Qunke Xia and Jia Liu","doi":"10.1039/D5JA00225G","DOIUrl":null,"url":null,"abstract":"<p >Iron (Fe) isotopes serve as a powerful tracer for studying planetary evolution, magmatic processes, redox conditions, biological activities, and other key geological processes. However, the application of stable Fe isotopes in depleted-Fe samples has been significantly constrained by pervasive argon-related isobaric interferences inherent to conventional multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). This study purified rock samples with varying Fe concentrations and precisely measured Fe isotope ratios using the collision cell pathway in the low-resolution mode of the Nu Sapphire instrument. We systematically evaluated the effects of total Fe concentration in solution, Fe signal intensity mismatch between samples and standards, and HNO<small><sub>3</sub></small> molarity differences on measurement precision and accuracy. For precise Fe isotope ratio measurements using sapphire, strict analytical conditions must be met: (1) matched nitric acid concentrations between samples and bracketing standards (1% deviation induces 0.2‰ Fe isotope offset); (2) consistent Fe signal intensities (5% concentration mismatch introduces 0.05‰ bias); and (3) suppression of matrix interferences to minimize isotopic fractionation. The results demonstrate that the Nu Sapphire can achieve precise measurements with as little as 1 μg of Fe, representing a tenfold improvement relative to conventional instruments. The Fe isotopic data obtained for 13 geological references show good agreement with previous studies. Therefore, the exceptional sensitivity of Nu Sapphire facilitates high-precision Fe isotope ratio measurements for iron-depleted samples, offering broad application potential.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 9","pages":" 2418-2425"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ja/d5ja00225g","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Iron (Fe) isotopes serve as a powerful tracer for studying planetary evolution, magmatic processes, redox conditions, biological activities, and other key geological processes. However, the application of stable Fe isotopes in depleted-Fe samples has been significantly constrained by pervasive argon-related isobaric interferences inherent to conventional multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). This study purified rock samples with varying Fe concentrations and precisely measured Fe isotope ratios using the collision cell pathway in the low-resolution mode of the Nu Sapphire instrument. We systematically evaluated the effects of total Fe concentration in solution, Fe signal intensity mismatch between samples and standards, and HNO3 molarity differences on measurement precision and accuracy. For precise Fe isotope ratio measurements using sapphire, strict analytical conditions must be met: (1) matched nitric acid concentrations between samples and bracketing standards (1% deviation induces 0.2‰ Fe isotope offset); (2) consistent Fe signal intensities (5% concentration mismatch introduces 0.05‰ bias); and (3) suppression of matrix interferences to minimize isotopic fractionation. The results demonstrate that the Nu Sapphire can achieve precise measurements with as little as 1 μg of Fe, representing a tenfold improvement relative to conventional instruments. The Fe isotopic data obtained for 13 geological references show good agreement with previous studies. Therefore, the exceptional sensitivity of Nu Sapphire facilitates high-precision Fe isotope ratio measurements for iron-depleted samples, offering broad application potential.