James MacKay, Lewis R. Hart, Alarqam Z. Tareq, Simeng Wang, Valeria Gonzalez Abrego, Ian Maskery, Derek Irvine, Ricky D. Wildman and Wayne Hayes
{"title":"4D printed polymethacrylate lattices capable of dimensional switching and payload release via photoresponsive actuation of azobenzene units","authors":"James MacKay, Lewis R. Hart, Alarqam Z. Tareq, Simeng Wang, Valeria Gonzalez Abrego, Ian Maskery, Derek Irvine, Ricky D. Wildman and Wayne Hayes","doi":"10.1039/D5MA00670H","DOIUrl":null,"url":null,"abstract":"<p >In this report, we demonstrate the synthesis of photoresponsive polymeric hydrogel lattices using stereolithographic 3D printing to afford objects that can change shape when irradiated with UV-vis light. Methacrylate-based monomers featuring azobenzene units were used as the photo-actuator components. Co-polymerisation of these monomers with 2-hydroxyethyl methacrylate produced well-defined hydrogel lattices. Photo-actuation of the hydrogels led to contraction of the 3D printed lattices up to 23% by volume. The ability of such photoresponsive hydrogel lattices to exhibit payload release has been studied using methylene blue as a drug mimic. Upon irradiation, the hydrogel lattice was squeezed like a sponge through photo-induced actuation in pulses, resulting in the controlled release of the pro-drug over 24 hours.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 17","pages":" 6174-6182"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00670h?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00670h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this report, we demonstrate the synthesis of photoresponsive polymeric hydrogel lattices using stereolithographic 3D printing to afford objects that can change shape when irradiated with UV-vis light. Methacrylate-based monomers featuring azobenzene units were used as the photo-actuator components. Co-polymerisation of these monomers with 2-hydroxyethyl methacrylate produced well-defined hydrogel lattices. Photo-actuation of the hydrogels led to contraction of the 3D printed lattices up to 23% by volume. The ability of such photoresponsive hydrogel lattices to exhibit payload release has been studied using methylene blue as a drug mimic. Upon irradiation, the hydrogel lattice was squeezed like a sponge through photo-induced actuation in pulses, resulting in the controlled release of the pro-drug over 24 hours.