Advanced 2D MoS2–chitosan nanocomposites for ultra-sensitive and selective dopamine detection

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ratiba Wali, Rayhane Zribi, Viviana Bressi, Ramzi Maalej, Antonino Foti, Pietro Giuseppe Gucciardi, Wissem Cheikhrouhou-Koubaa and Giovanni Neri
{"title":"Advanced 2D MoS2–chitosan nanocomposites for ultra-sensitive and selective dopamine detection","authors":"Ratiba Wali, Rayhane Zribi, Viviana Bressi, Ramzi Maalej, Antonino Foti, Pietro Giuseppe Gucciardi, Wissem Cheikhrouhou-Koubaa and Giovanni Neri","doi":"10.1039/D5MA00133A","DOIUrl":null,"url":null,"abstract":"<p >Dopamine, an essential neurotransmitter in the central nervous system, plays a key role in neurological disorders such as Parkinson's disease, making its accurate monitoring critical for effective prevention, diagnosis, and management. This study introduces a novel and cost-effective electrochemical sensor for dopamine detection, leveraging molybdenum disulfide–chitosan (Cs–MoS<small><sub>2</sub></small>) nanohybrids synthesized <em>via</em> a simple liquid-phase exfoliation (LPE) method. Chitosan nanoparticles were dispersed in a solution containing molybdenum disulphide (MoS<small><sub>2</sub></small>) nanosheets to form the Cs–MoS<small><sub>2</sub></small> nanohybrids. These nanohybrids were extensively characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and atomic force microscopy (AFM), confirming their successful synthesis and unique properties. Commercial screen-printed electrodes (SPEs) were modified with the Cs–MoS<small><sub>2</sub></small> nanohybrids and evaluated for dopamine sensing through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The sensor exhibited high sensitivity, with two distinct linear response ranges: 4.48 μA μM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> for 0–40 μM and 1.67 μA μM<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> for 40–440 μM. The limit of detection (LOD) was determined to be 0.8 μM. These performance metrics demonstrate superior analytical capabilities, including excellent selectivity against common interfering species in body fluids, good stability, and reproducibility. The findings underline the novelty of utilizing Cs–MoS<small><sub>2</sub></small> nanohybrids in electrochemical dopamine detection and highlight their potential for practical applications in biomedical diagnostics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 17","pages":" 6038-6051"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00133a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00133a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dopamine, an essential neurotransmitter in the central nervous system, plays a key role in neurological disorders such as Parkinson's disease, making its accurate monitoring critical for effective prevention, diagnosis, and management. This study introduces a novel and cost-effective electrochemical sensor for dopamine detection, leveraging molybdenum disulfide–chitosan (Cs–MoS2) nanohybrids synthesized via a simple liquid-phase exfoliation (LPE) method. Chitosan nanoparticles were dispersed in a solution containing molybdenum disulphide (MoS2) nanosheets to form the Cs–MoS2 nanohybrids. These nanohybrids were extensively characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and atomic force microscopy (AFM), confirming their successful synthesis and unique properties. Commercial screen-printed electrodes (SPEs) were modified with the Cs–MoS2 nanohybrids and evaluated for dopamine sensing through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The sensor exhibited high sensitivity, with two distinct linear response ranges: 4.48 μA μM−1 cm−2 for 0–40 μM and 1.67 μA μM−1 cm−2 for 40–440 μM. The limit of detection (LOD) was determined to be 0.8 μM. These performance metrics demonstrate superior analytical capabilities, including excellent selectivity against common interfering species in body fluids, good stability, and reproducibility. The findings underline the novelty of utilizing Cs–MoS2 nanohybrids in electrochemical dopamine detection and highlight their potential for practical applications in biomedical diagnostics.

Abstract Image

先进的二维二硫化钼-壳聚糖纳米复合材料超灵敏选择性检测多巴胺
多巴胺是中枢神经系统中一种重要的神经递质,在帕金森病等神经系统疾病中起着关键作用,因此准确监测多巴胺对有效预防、诊断和治疗至关重要。本研究利用简单的液相剥离(LPE)法合成的二硫化钼-壳聚糖(Cs-MoS2)纳米杂化物,介绍了一种新型的、具有成本效益的多巴胺检测电化学传感器。将壳聚糖纳米颗粒分散在含二硫化钼纳米片的溶液中,形成Cs-MoS2纳米杂化物。利用紫外可见光谱、傅里叶变换红外光谱、拉曼光谱、热重分析(TGA)和原子力显微镜(AFM)对这些纳米杂化物进行了广泛的表征,证实了它们的成功合成和独特的性能。用Cs-MoS2纳米杂化物修饰商业丝网印刷电极(spe),并通过循环伏安法(CV)、电化学阻抗谱(EIS)和差分脉冲伏安法(DPV)评估其多巴胺感应能力。该传感器具有较高的灵敏度,线性响应范围为4.48 μA μM−1 cm−2 (0 ~ 40 μM)和1.67 μA μM−1 cm−2 (40 ~ 440 μM)。测定的检出限为0.8 μM。这些性能指标显示了卓越的分析能力,包括对体液中常见干扰物质的出色选择性,良好的稳定性和可重复性。这些发现强调了利用Cs-MoS2纳米杂化物在电化学多巴胺检测中的新颖性,并强调了它们在生物医学诊断中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信