Enhancing Modulation Classification via Diffusion Transformers for Drone Video Signal Processing

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Insup Lee;Khalifa Alteneiji;Mohammed Alghfeli
{"title":"Enhancing Modulation Classification via Diffusion Transformers for Drone Video Signal Processing","authors":"Insup Lee;Khalifa Alteneiji;Mohammed Alghfeli","doi":"10.1109/LSP.2025.3599110","DOIUrl":null,"url":null,"abstract":"Reliable drone video signal processing depends on precise identification of modulation type to ensure effective demodulation. Automatic modulation classification (AMC) plays a key role in this process by extracting meaningful features from complex I/Q data. Although deep learning-based approaches have advanced AMC, two challenges still remain: (i) limited support for drone-relevant modulation types and (ii) the need for stable, high-quality generative models for robust data augmentation. This letter proposes the adoption of diffusion transformers (DiT), which capture intricate signal characteristics in diverse drone communication scenarios, including long-range communications, mobile drone networks, and high data rate video transmission. Experimental results demonstrate that DiT improves both the accuracy and robustness of AMC in drone video signal processing scenarios.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3325-3329"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11125498/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable drone video signal processing depends on precise identification of modulation type to ensure effective demodulation. Automatic modulation classification (AMC) plays a key role in this process by extracting meaningful features from complex I/Q data. Although deep learning-based approaches have advanced AMC, two challenges still remain: (i) limited support for drone-relevant modulation types and (ii) the need for stable, high-quality generative models for robust data augmentation. This letter proposes the adoption of diffusion transformers (DiT), which capture intricate signal characteristics in diverse drone communication scenarios, including long-range communications, mobile drone networks, and high data rate video transmission. Experimental results demonstrate that DiT improves both the accuracy and robustness of AMC in drone video signal processing scenarios.
在无人机视频信号处理中利用扩散变压器增强调制分类
可靠的无人机视频信号处理依赖于对调制类型的精确识别,以保证有效的解调。自动调制分类(AMC)从复杂的I/Q数据中提取有意义的特征,在这一过程中起着关键作用。尽管基于深度学习的方法具有先进的AMC,但仍然存在两个挑战:(i)对无人机相关调制类型的支持有限;(ii)需要稳定、高质量的生成模型来进行稳健的数据增强。这封信建议采用扩散变压器(DiT),它可以在各种无人机通信场景中捕获复杂的信号特征,包括远程通信、移动无人机网络和高数据速率视频传输。实验结果表明,在无人机视频信号处理场景中,DiT提高了AMC的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信