Robust Adaptive Nonlinear KF Under Hierarchically Gaussian Outliers

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Haoqing Li;Jordi Vilà-Valls;Pau Closas
{"title":"Robust Adaptive Nonlinear KF Under Hierarchically Gaussian Outliers","authors":"Haoqing Li;Jordi Vilà-Valls;Pau Closas","doi":"10.1109/LCSYS.2025.3597306","DOIUrl":null,"url":null,"abstract":"Standard state estimation techniques are designed under the assumption that the system is perfectly known, which does not typically hold in practice. Under model mismatch the filter performance is significantly degraded, reason why robust estimators are relevant. In this contribution we address the nonlinear filtering problem under outliers, for which a skewed Gaussian scale mixture distribution is considered to obtain a flexible description that allows for a conditionally Gaussian representation. A variational Bayesian approach is used to approximate the joint posterior distribution of the states and latent variables, designing a robust nonlinear filter, where the skewness parameters are estimated by online expectation-maximization. An illustrative navigation example is provided to show the new filter’s advantages and limitations.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2121-2126"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11121668/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Standard state estimation techniques are designed under the assumption that the system is perfectly known, which does not typically hold in practice. Under model mismatch the filter performance is significantly degraded, reason why robust estimators are relevant. In this contribution we address the nonlinear filtering problem under outliers, for which a skewed Gaussian scale mixture distribution is considered to obtain a flexible description that allows for a conditionally Gaussian representation. A variational Bayesian approach is used to approximate the joint posterior distribution of the states and latent variables, designing a robust nonlinear filter, where the skewness parameters are estimated by online expectation-maximization. An illustrative navigation example is provided to show the new filter’s advantages and limitations.
层次高斯离群值下的鲁棒自适应非线性KF
标准状态估计技术是在系统完全已知的假设下设计的,这在实践中通常是不成立的。在模型不匹配的情况下,滤波器的性能会显著下降,这就是为什么需要使用鲁棒估计器。在本贡献中,我们解决了异常值下的非线性滤波问题,其中考虑了偏斜高斯尺度混合分布以获得允许有条件高斯表示的灵活描述。采用变分贝叶斯方法逼近状态和潜变量的联合后验分布,设计了一种鲁棒非线性滤波器,其中偏度参数通过在线期望最大化估计。给出了一个说明性的导航示例,以显示新滤波器的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信