{"title":"GMM inference for the spatial autoregressive kink model with an unknown threshold","authors":"Wentao Wang , Dengkui Li","doi":"10.1016/j.spasta.2025.100926","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers spatial autoregressive kink models with an unknown threshold, where the impact of a specific explanatory variable on the response variable is piecewise linear but differs below and above this threshold. To address the endogeneity issue, the paper presents the modified generalized method of moments (GMM) that consistently estimates the threshold location and slope changes. Asymptotic properties, including the consistency and asymptotic normality of the GMM estimators, and the limiting distribution of the Sup-Wald statistic, are established under a set of regularity assumptions. In view of the nonstandard asymptotic null distribution, we use a multiplier bootstrap to approximate the <span><math><mi>p</mi></math></span>-value of the Sup-Wald statistic to detect the presence of the threshold. Simulation study illustrates that the estimators and inference are well-behaved in finite samples. An empirical application to the secondary industrial structure data of 280 Chinese prefecture-level cities further highlights the practical merits of our methods.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"69 ","pages":"Article 100926"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221167532500048X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper considers spatial autoregressive kink models with an unknown threshold, where the impact of a specific explanatory variable on the response variable is piecewise linear but differs below and above this threshold. To address the endogeneity issue, the paper presents the modified generalized method of moments (GMM) that consistently estimates the threshold location and slope changes. Asymptotic properties, including the consistency and asymptotic normality of the GMM estimators, and the limiting distribution of the Sup-Wald statistic, are established under a set of regularity assumptions. In view of the nonstandard asymptotic null distribution, we use a multiplier bootstrap to approximate the -value of the Sup-Wald statistic to detect the presence of the threshold. Simulation study illustrates that the estimators and inference are well-behaved in finite samples. An empirical application to the secondary industrial structure data of 280 Chinese prefecture-level cities further highlights the practical merits of our methods.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.